Home
Class 12
MATHS
The area of the triangle whose adjacent ...

The area of the triangle whose adjacent sides are : `vec(a)=3hat(i)+hat(j)+4hat(k)` and `vec(b)=hat(i)-hat(j)+hat(k)` is :

A

`(1)/(2)sqrt(42)`

B

42

C

`sqrt(42)`

D

`sqrt(21)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle formed by the vectors \(\vec{a}\) and \(\vec{b}\), we can use the formula: \[ \text{Area} = \frac{1}{2} \|\vec{a} \times \vec{b}\| \] where \(\|\vec{a} \times \vec{b}\|\) is the magnitude of the cross product of the vectors \(\vec{a}\) and \(\vec{b}\). ### Step 1: Define the vectors Given: \[ \vec{a} = 3\hat{i} + \hat{j} + 4\hat{k} \] \[ \vec{b} = \hat{i} - \hat{j} + \hat{k} \] ### Step 2: Calculate the cross product \(\vec{a} \times \vec{b}\) The cross product can be calculated using the determinant of a matrix formed by the unit vectors and the components of \(\vec{a}\) and \(\vec{b}\): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 4 \\ 1 & -1 & 1 \end{vmatrix} \] ### Step 3: Calculate the determinant Using the determinant formula: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 1 & 4 \\ -1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 4 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 1 \\ 1 & -1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 1 & 4 \\ -1 & 1 \end{vmatrix} = (1)(1) - (4)(-1) = 1 + 4 = 5\) 2. \(\begin{vmatrix} 3 & 4 \\ 1 & 1 \end{vmatrix} = (3)(1) - (4)(1) = 3 - 4 = -1\) 3. \(\begin{vmatrix} 3 & 1 \\ 1 & -1 \end{vmatrix} = (3)(-1) - (1)(1) = -3 - 1 = -4\) Putting it all together: \[ \vec{a} \times \vec{b} = 5\hat{i} - (-1)\hat{j} - 4\hat{k} = 5\hat{i} + 1\hat{j} - 4\hat{k} \] ### Step 4: Find the magnitude of \(\vec{a} \times \vec{b}\) The magnitude is given by: \[ \|\vec{a} \times \vec{b}\| = \sqrt{(5)^2 + (1)^2 + (-4)^2} = \sqrt{25 + 1 + 16} = \sqrt{42} \] ### Step 5: Calculate the area of the triangle Now, we can find the area: \[ \text{Area} = \frac{1}{2} \|\vec{a} \times \vec{b}\| = \frac{1}{2} \sqrt{42} \] ### Final Answer The area of the triangle is: \[ \text{Area} = \frac{\sqrt{42}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|17 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

What is the area of the triangle formed by sides vec(A) = 2hat(i) - 3hat(j) + 4hat(k) and vec(B) = hat(i) - 2hat(k) ?

Find the area of the triangle whose adjacent sides are determined by the vectors vec(a)=(-2 hat(i)-5 hat(k)) and vec(b)= ( hat(i)- 2 hat(j) - hat(k)) .

Calculate the area of the parallelogram when adjacent sides are given by the vectors vec(A)=hat(i)+2hat(j)+3hat(k) and vec(B)=2hat(i)-3hat(j)+hat(k) .

Find the area of a parallelogram whose adjacent sides are given by the vectors vec a=3hat i+hat j+4hat k and vec b=hat i-hat j+hat k

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

The vectors from origin to the points A and B are vec(a)=3hat(i)-6hat(j)+2hat(k) and vec(b)= 2hat(i) +hat(j)-2hat(k) respectively. Find the area of : (i) the triangle OAB (ii) the parallelogram formed by vec(OA) and vec(OB) as adjacent sides.

MODERN PUBLICATION-VECTOR ALGEBRA -Objective Type Questions (A. Multiple Choice Questions)
  1. Write the value of hat(i).(hat(j)xxhat(k))+hat(j).(hat(i)xxhat(k))+ha...

    Text Solution

    |

  2. If is the angle between any two vectors vec a and vec b , t...

    Text Solution

    |

  3. The area of the triangle whose adjacent sides are : vec(a)=3hat(i)+hat...

    Text Solution

    |

  4. The magnitude of the vector 6hat(i)+2hat(j)+3hat(k) is :

    Text Solution

    |

  5. The vector with initial point P(2,-3,5) and terminal point Q(3,-4,7) i...

    Text Solution

    |

  6. The angle between the vectors hat i -hat j and hat j - hat k is

    Text Solution

    |

  7. The value of 'lambda' for which the two vectors : 2hat(i)-hat(j)+2hat(...

    Text Solution

    |

  8. If (2hat(i)+6hat(j)+ 27hat(k))xx(hat(i)+phat(j)+qhat(k))=vec(0), then ...

    Text Solution

    |

  9. If vec(a)=2hat(i)+3hat(j)-hat(k), then |vec(a)| is :

    Text Solution

    |

  10. Write the value of hat(i).(hat(j)xxhat(k))+hat(j).(hat(i)xxhat(k))+ha...

    Text Solution

    |

  11. For mutually perpendicular unit vectors hat(i), hat(j), hat(k), we hav...

    Text Solution

    |

  12. Direction - ratios of vector vec(a)=hat(i)+hat(j)-2hat(k) are :

    Text Solution

    |

  13. If vec(a)=hat(i)+2hat(j), then |vec(a)| is :

    Text Solution

    |

  14. Direction - cosines of vec(a)=hat(i)+hat(j)-2hat(k) are :

    Text Solution

    |

  15. If p hat(i)+3hat(j) is a vector of magnitude 5, then the value of p is...

    Text Solution

    |

  16. If is the angle between any two vectors vec a and vec b , t...

    Text Solution

    |

  17. The inequality |vec(a).vec(b)|le |vec(a)||vec(b)| is called :

    Text Solution

    |

  18. The vectors vec(a) and vec(b) are perpendicular if :

    Text Solution

    |

  19. Find the angle between two vectors vec a and vec b with magnitudes 1 a...

    Text Solution

    |

  20. Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=3\ a n d\ vec adot ve...

    Text Solution

    |