Home
Class 12
MATHS
The magnitude of the vector 6hat(i)+2hat...

The magnitude of the vector `6hat(i)+2hat(j)+3hat(k)` is :

A

5

B

7

C

12

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the vector \( \vec{v} = 6\hat{i} + 2\hat{j} + 3\hat{k} \), we can use the formula for the magnitude of a vector in three-dimensional space. The magnitude \( |\vec{v}| \) of a vector \( \vec{v} = a\hat{i} + b\hat{j} + c\hat{k} \) is given by: \[ |\vec{v}| = \sqrt{a^2 + b^2 + c^2} \] ### Step-by-Step Solution: 1. **Identify the components of the vector**: - Here, \( a = 6 \), \( b = 2 \), and \( c = 3 \). 2. **Square each component**: - Calculate \( a^2 = 6^2 = 36 \) - Calculate \( b^2 = 2^2 = 4 \) - Calculate \( c^2 = 3^2 = 9 \) 3. **Sum the squares of the components**: - \( a^2 + b^2 + c^2 = 36 + 4 + 9 = 49 \) 4. **Take the square root of the sum**: - \( |\vec{v}| = \sqrt{49} = 7 \) 5. **Conclusion**: - The magnitude of the vector \( 6\hat{i} + 2\hat{j} + 3\hat{k} \) is \( 7 \). ### Final Answer: The magnitude of the vector \( 6\hat{i} + 2\hat{j} + 3\hat{k} \) is \( 7 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|17 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

The magnitude of the vector hat(i)+xhat(j)+3hat(k) is half of the magnitude of vector 4hat(i)+(4x-2)hat(j)+2hat(k) . The values of x are ?

Find the magnitude of the vector vec a=2hat i+3hat j-6hat k

Knowledge Check

  • Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

    A
    `(2)/(sqrt(14))`
    B
    `(1)/(sqrt(14))`
    C
    `(3)/(sqrt(17))`
    D
    `(3)/(sqrt(14))`
  • The magnitude of the component of the vector 2hat(i)+3hat(j)+hat(k)" along" " 3"hat(i)+4hat(k) is

    A
    `(1)/(2)`
    B
    `(14)/(5)`
    C
    2
    D
    `(6)/(5)`
  • The vector(s) which is/are coplanar with vectors hat(i)+hat(j)+2hat(k) and hat(i)+2hat(j)+hat(k) are perpendicular to the vector hat(i)+hat(j)+hat(k) is are

    A
    `hat(j)-hat(k)`
    B
    `-hat(i)+hat(j)`
    C
    `hat(i)-hat(j)`
    D
    `-hat(j)+hat(k)`
  • Similar Questions

    Explore conceptually related problems

    Find the value of m so that the vector 3hat(i)-2hat(j)+hat(k) may be perpendicular to the vector 2hat(i)+6hat(j)+mhat(k) .

    Find the magnitude of the vectors vec a=2hat i+3hat j-6hat k

    For what value of 'a' the vectors : 2hat(i)-3hat(j)+4hat(k) and a hat(i)+6hat(j)-8hat(k) are collinear ?

    Find the unit vector in the direction of the vector : vec(a)=3hat(i)+2hat(j)+6hat(k)

    The magnitude of the projection of the vector 2hat i+3hat j+hat k on the vector perpendicular to the plane containing the vectors hat i+hat j+widehat K and hat j+3hat 2j+3hat k is :