Home
Class 12
MATHS
The value of 'lambda' for which the two ...

The value of `'lambda'` for which the two vectors : `2hat(i)-hat(j)+2hat(k)` and `3hat(i)+lambda hat(j)+hat(k)` are perpendicular is :

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) for which the two vectors \( \mathbf{a} = 2\hat{i} - \hat{j} + 2\hat{k} \) and \( \mathbf{b} = 3\hat{i} + \lambda \hat{j} + \hat{k} \) are perpendicular, we can follow these steps: ### Step 1: Understand the condition for perpendicular vectors Two vectors are perpendicular if their dot product is zero. Therefore, we need to find \( \mathbf{a} \cdot \mathbf{b} = 0 \). ### Step 2: Write down the vectors Let: \[ \mathbf{a} = 2\hat{i} - \hat{j} + 2\hat{k} \] \[ \mathbf{b} = 3\hat{i} + \lambda \hat{j} + \hat{k} \] ### Step 3: Calculate the dot product The dot product \( \mathbf{a} \cdot \mathbf{b} \) is calculated as follows: \[ \mathbf{a} \cdot \mathbf{b} = (2)(3) + (-1)(\lambda) + (2)(1) \] This simplifies to: \[ \mathbf{a} \cdot \mathbf{b} = 6 - \lambda + 2 \] \[ \mathbf{a} \cdot \mathbf{b} = 8 - \lambda \] ### Step 4: Set the dot product to zero Since the vectors are perpendicular, we set the dot product equal to zero: \[ 8 - \lambda = 0 \] ### Step 5: Solve for \( \lambda \) Now, we solve for \( \lambda \): \[ \lambda = 8 \] ### Final Answer The value of \( \lambda \) for which the two vectors are perpendicular is: \[ \lambda = 8 \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|17 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

What is the value of lambda for which the vectors 3hat(i)+4hat(j)-hat(k) and -2hat(i)+lambda hat(j)+10hat(k) are perpendicular?

The value of lambda for which the two vectors vec(a) = 5hat(i) + lambda hat(j) + hat(k) and vec(b) = hat(i) - 2hat(j) + hat(k) are perpendicular to each other is :

What is the value of lambda for which the vectors hat(i)-hat(j)+hat(k), 2 hat(i)+hat(j)-hat(k) and lambda hat(i)-hat(j)+lambda hat(k) are co-planar?

Find 'lambda' if the vectors : hat(i)-hat(j)+hat(k), 3hat(i)+hat(j)+2hat(k) and hat(i)+lambda hat(j)-3hat(k) are coplanar.

If the vectors vec(a)=3hat(i)+hat(j)-2hatk and vec(b)=hat(i)+lambda hat(j)-3hat(k) are perpendicular to each other then lambda=?

What is the value of lamda for which the vectors hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k) are coplanar

Find 'lambda' when the vectors : vec(a)=2hat(i)+lambda hat(j)+hat(k) and vec(b)=hat(i)-2hat(j)+3hat(k) are perpendicular to each other.

The value of 'lambda' such that the vectors : 3hat(i)+lambdahat(j)+5hat(k), hat(i)+2hat(j)-3hat(k) and 2hat(i)-hat(j)+hat(k) are coplanar is __________.

Find the value of lambda for which the four points with position vectors (-hat(j)+hat(k)), (2hat(i)-hat(j)-hat(k)), (hat(i)+lambda hat(j)+hat(k))and (3hat(j)+3hat(k)) are coplanar.

The number of distinct real values of lambda , for which the vectors -lambda^(2)hat(i)+hat(j)+hat(k), hat(i)-lambda^(2)hat(j)+hat(k) and hat(i)+hat(j)-lambda^(2)hat(k) are coplanar, is

MODERN PUBLICATION-VECTOR ALGEBRA -Objective Type Questions (A. Multiple Choice Questions)
  1. The vector with initial point P(2,-3,5) and terminal point Q(3,-4,7) i...

    Text Solution

    |

  2. The angle between the vectors hat i -hat j and hat j - hat k is

    Text Solution

    |

  3. The value of 'lambda' for which the two vectors : 2hat(i)-hat(j)+2hat(...

    Text Solution

    |

  4. If (2hat(i)+6hat(j)+ 27hat(k))xx(hat(i)+phat(j)+qhat(k))=vec(0), then ...

    Text Solution

    |

  5. If vec(a)=2hat(i)+3hat(j)-hat(k), then |vec(a)| is :

    Text Solution

    |

  6. Write the value of hat(i).(hat(j)xxhat(k))+hat(j).(hat(i)xxhat(k))+ha...

    Text Solution

    |

  7. For mutually perpendicular unit vectors hat(i), hat(j), hat(k), we hav...

    Text Solution

    |

  8. Direction - ratios of vector vec(a)=hat(i)+hat(j)-2hat(k) are :

    Text Solution

    |

  9. If vec(a)=hat(i)+2hat(j), then |vec(a)| is :

    Text Solution

    |

  10. Direction - cosines of vec(a)=hat(i)+hat(j)-2hat(k) are :

    Text Solution

    |

  11. If p hat(i)+3hat(j) is a vector of magnitude 5, then the value of p is...

    Text Solution

    |

  12. If is the angle between any two vectors vec a and vec b , t...

    Text Solution

    |

  13. The inequality |vec(a).vec(b)|le |vec(a)||vec(b)| is called :

    Text Solution

    |

  14. The vectors vec(a) and vec(b) are perpendicular if :

    Text Solution

    |

  15. Find the angle between two vectors vec a and vec b with magnitudes 1 a...

    Text Solution

    |

  16. Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=3\ a n d\ vec adot ve...

    Text Solution

    |

  17. The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3...

    Text Solution

    |

  18. The D.C.'s of the vector hat(i)+2hat(j)+3hat(k) are :

    Text Solution

    |

  19. If vec(a)=2hat(i)+2hat(j)+3hat(k), then its magnitude is :

    Text Solution

    |

  20. If vec(a) and vec(b) are unlike vectors, then the angle between them i...

    Text Solution

    |