Home
Class 12
MATHS
If vec(a)=2hat(i)+3hat(j)-hat(k), then |...

If `vec(a)=2hat(i)+3hat(j)-hat(k)`, then `|vec(a)|` is :

A

`sqrt(15)`

B

`sqrt(14)`

C

14

D

15

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the vector \(\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}\), we will follow these steps: ### Step 1: Identify the components of the vector The vector \(\vec{a}\) can be broken down into its components: - \(x = 2\) (coefficient of \(\hat{i}\)) - \(y = 3\) (coefficient of \(\hat{j}\)) - \(z = -1\) (coefficient of \(\hat{k}\)) ### Step 2: Use the formula for the magnitude of a vector The magnitude \(|\vec{a}|\) of a vector \(\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}\) is given by the formula: \[ |\vec{a}| = \sqrt{x^2 + y^2 + z^2} \] ### Step 3: Substitute the values into the formula Substituting the values of \(x\), \(y\), and \(z\) into the formula: \[ |\vec{a}| = \sqrt{(2)^2 + (3)^2 + (-1)^2} \] ### Step 4: Calculate the squares of the components Calculating the squares: - \(2^2 = 4\) - \(3^2 = 9\) - \((-1)^2 = 1\) ### Step 5: Sum the squares Now add these values together: \[ |\vec{a}| = \sqrt{4 + 9 + 1} = \sqrt{14} \] ### Step 6: Final result Thus, the magnitude of the vector \(\vec{a}\) is: \[ |\vec{a}| = \sqrt{14} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|17 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = 2hat(i) + 3hat(j) - 6hat(k) and vec(b) = 12 hat(j) + 5 hat(k) . then (projection of vec(a) on vec(b)//("projection of b on a") )

If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

Given vec(a)= 2 hat(i) -3hat(j) + 4hat(k) and vec(b) is a unit vector co-directional with vec(a) . If m is a scalar such that vec(b)= mvec(a) then what is the value of m?

If vec(a)= 2 hat(i) - 3hat(j) - hat(k), vec(b) = hat(i) +4hat(j) -2 hat(k) , then what is (vec(a) xx vec(b)) xx (vec(a)- vec(b)) is equal to ?

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a)= 2 hat(i) + 3hat(j) + 4hat(k) and vec(b) = 3hat(i) + 2hat(j) - lamda hat(k) are perpendicular, then what is the value of lamda ?

If vec(a) = 2 hat(i) + 3 hat (j) + 4 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - lambda hat(k) are perpendicular, then what is the value of lambda ?

If vec(a)=2hat(i)-3hat(j)-hat(k) and vec(b)=hat(i)+4hat(j)-2hat(k) , then check whether vec(a)xx vec(b)=vec(b)xx vec(a) .

If angle bisector of vec(a) = 2hat(i) + 3hat(j) + 4hat(k) and vec(b) = 4hat(i) - 2hat(j) + 3 hat(k) is vec(c) = alpha hat(i) + 2hat(j) + beta hat(k) then :

Let vec(A)=2hat(i)-3hat(j)+4hat(k) and vec(B)=4hat(i)+hat(j)+2hat(k) then |vec(A)xx vec(B)| is equal to

MODERN PUBLICATION-VECTOR ALGEBRA -Objective Type Questions (A. Multiple Choice Questions)
  1. The value of 'lambda' for which the two vectors : 2hat(i)-hat(j)+2hat(...

    Text Solution

    |

  2. If (2hat(i)+6hat(j)+ 27hat(k))xx(hat(i)+phat(j)+qhat(k))=vec(0), then ...

    Text Solution

    |

  3. If vec(a)=2hat(i)+3hat(j)-hat(k), then |vec(a)| is :

    Text Solution

    |

  4. Write the value of hat(i).(hat(j)xxhat(k))+hat(j).(hat(i)xxhat(k))+ha...

    Text Solution

    |

  5. For mutually perpendicular unit vectors hat(i), hat(j), hat(k), we hav...

    Text Solution

    |

  6. Direction - ratios of vector vec(a)=hat(i)+hat(j)-2hat(k) are :

    Text Solution

    |

  7. If vec(a)=hat(i)+2hat(j), then |vec(a)| is :

    Text Solution

    |

  8. Direction - cosines of vec(a)=hat(i)+hat(j)-2hat(k) are :

    Text Solution

    |

  9. If p hat(i)+3hat(j) is a vector of magnitude 5, then the value of p is...

    Text Solution

    |

  10. If is the angle between any two vectors vec a and vec b , t...

    Text Solution

    |

  11. The inequality |vec(a).vec(b)|le |vec(a)||vec(b)| is called :

    Text Solution

    |

  12. The vectors vec(a) and vec(b) are perpendicular if :

    Text Solution

    |

  13. Find the angle between two vectors vec a and vec b with magnitudes 1 a...

    Text Solution

    |

  14. Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=3\ a n d\ vec adot ve...

    Text Solution

    |

  15. The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3...

    Text Solution

    |

  16. The D.C.'s of the vector hat(i)+2hat(j)+3hat(k) are :

    Text Solution

    |

  17. If vec(a)=2hat(i)+2hat(j)+3hat(k), then its magnitude is :

    Text Solution

    |

  18. If vec(a) and vec(b) are unlike vectors, then the angle between them i...

    Text Solution

    |

  19. The angle between the vectors hat(i)-hat(j) and hat(j)+hat(k) is :

    Text Solution

    |

  20. If vec(a).vec(b)=|vec(a)xx vec(b)|, then angle between vector vec(a) a...

    Text Solution

    |