Home
Class 12
MATHS
If vec(a)=hat(i)+2hat(j), then |vec(a)| ...

If `vec(a)=hat(i)+2hat(j)`, then `|vec(a)|` is :

A

3

B

`-1`

C

5

D

`sqrt(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the vector \(\vec{a} = \hat{i} + 2\hat{j}\), we will follow these steps: ### Step 1: Identify the components of the vector The vector \(\vec{a}\) can be expressed in terms of its components: - The coefficient of \(\hat{i}\) is 1. - The coefficient of \(\hat{j}\) is 2. - There is no \(\hat{k}\) component, so it is 0. Thus, we can write: \[ \vec{a} = 1\hat{i} + 2\hat{j} + 0\hat{k} \] ### Step 2: Use the formula for the magnitude of a vector The magnitude \(|\vec{a}|\) of a vector \(\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}\) is given by the formula: \[ |\vec{a}| = \sqrt{x^2 + y^2 + z^2} \] ### Step 3: Substitute the components into the formula Substituting the values of \(x\), \(y\), and \(z\): - \(x = 1\) - \(y = 2\) - \(z = 0\) We have: \[ |\vec{a}| = \sqrt{(1)^2 + (2)^2 + (0)^2} \] ### Step 4: Calculate the squares Calculating the squares: \[ |\vec{a}| = \sqrt{1^2 + 2^2 + 0^2} = \sqrt{1 + 4 + 0} \] ### Step 5: Simplify the expression Now, simplify the expression: \[ |\vec{a}| = \sqrt{5} \] ### Final Answer Thus, the magnitude of the vector \(\vec{a}\) is: \[ |\vec{a}| = \sqrt{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|17 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=2hat(i)+hat(j)-2hat(k) , then |vec(a)|= ____________.

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a) = 2hat(i) + 2hat(j) + 3hat(k), vec(b)= - hat(i) + 2hat(j) + 3 and vec(c ) = 3hat(i) + hat(j) are three vectors such that vec(a) + t vec(b) is perpendicular to c. then what is t equal to?

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

Let vec(a)=hat(i)+2hat(j) and vec(b)=2hat(i)+hat(j) . (i) Then, |vec(a)|=|vec(b)| (ii) Then vectors vec(a) and vec(b) are equal.

If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c )=2hat(i)+8hat(j) , then find vec(a).(vec(b)xx vec(c )) and (vec(b)xx vec(c )).vec(a) .

If vec(a) = 2 hat(i) + 2 hat(j) + hat(k) , vec(b) = - hat(i) + hat(j) + 2 hat(k) and vec ( c) = 3 hat(i) + hat(j) such that vec(a) + lambda hat (b) is perpendicular to vec( c) , find lambda .

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

Given vec(A) = 3hat(i) + 2hat(j) and vec(B) = hat(i) + hat(j). The component of vector vec(A) along vector vec(B) is

MODERN PUBLICATION-VECTOR ALGEBRA -Objective Type Questions (A. Multiple Choice Questions)
  1. For mutually perpendicular unit vectors hat(i), hat(j), hat(k), we hav...

    Text Solution

    |

  2. Direction - ratios of vector vec(a)=hat(i)+hat(j)-2hat(k) are :

    Text Solution

    |

  3. If vec(a)=hat(i)+2hat(j), then |vec(a)| is :

    Text Solution

    |

  4. Direction - cosines of vec(a)=hat(i)+hat(j)-2hat(k) are :

    Text Solution

    |

  5. If p hat(i)+3hat(j) is a vector of magnitude 5, then the value of p is...

    Text Solution

    |

  6. If is the angle between any two vectors vec a and vec b , t...

    Text Solution

    |

  7. The inequality |vec(a).vec(b)|le |vec(a)||vec(b)| is called :

    Text Solution

    |

  8. The vectors vec(a) and vec(b) are perpendicular if :

    Text Solution

    |

  9. Find the angle between two vectors vec a and vec b with magnitudes 1 a...

    Text Solution

    |

  10. Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=3\ a n d\ vec adot ve...

    Text Solution

    |

  11. The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3...

    Text Solution

    |

  12. The D.C.'s of the vector hat(i)+2hat(j)+3hat(k) are :

    Text Solution

    |

  13. If vec(a)=2hat(i)+2hat(j)+3hat(k), then its magnitude is :

    Text Solution

    |

  14. If vec(a) and vec(b) are unlike vectors, then the angle between them i...

    Text Solution

    |

  15. The angle between the vectors hat(i)-hat(j) and hat(j)+hat(k) is :

    Text Solution

    |

  16. If vec(a).vec(b)=|vec(a)xx vec(b)|, then angle between vector vec(a) a...

    Text Solution

    |

  17. Find the projection of the vector hat i+3 hat j+7 hat k on the vecto...

    Text Solution

    |

  18. If the angle between two vectors vec(a) and vec(b) is zero, then :

    Text Solution

    |

  19. The projection of vector vec(a)=2hat(i)+3hat(j)+2hat(k) on vec(b)=hat(...

    Text Solution

    |

  20. If the vectors 5hat(i)+2hat(j)-hat(k) and lambda hat(i)-hat(j)+5hat(k...

    Text Solution

    |