Home
Class 12
MATHS
The angle between the vectors : vec(a)...

The angle between the vectors :
`vec(a)=hat(i)+2hat(j)-3hat(k)` and `3hat(i)-hat(j)+2hat(k)` is :

A

`cos^(-1)((5)/(14))`

B

`cos^(-1)((9)/(14))`

C

`cos^(-1)(-(5)/(14))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \(\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}\) and \(\vec{b} = 3\hat{i} - \hat{j} + 2\hat{k}\), we can use the formula involving the dot product: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] ### Step 1: Calculate the dot product \(\vec{a} \cdot \vec{b}\) The dot product of two vectors \(\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}\) and \(\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}\) is given by: \[ \vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 \] For our vectors: - \(a_1 = 1\), \(a_2 = 2\), \(a_3 = -3\) - \(b_1 = 3\), \(b_2 = -1\), \(b_3 = 2\) Calculating the dot product: \[ \vec{a} \cdot \vec{b} = (1)(3) + (2)(-1) + (-3)(2) = 3 - 2 - 6 = -5 \] ### Step 2: Calculate the magnitudes of \(\vec{a}\) and \(\vec{b}\) The magnitude of a vector \(\vec{v} = x \hat{i} + y \hat{j} + z \hat{k}\) is given by: \[ |\vec{v}| = \sqrt{x^2 + y^2 + z^2} \] Calculating the magnitude of \(\vec{a}\): \[ |\vec{a}| = \sqrt{1^2 + 2^2 + (-3)^2} = \sqrt{1 + 4 + 9} = \sqrt{14} \] Calculating the magnitude of \(\vec{b}\): \[ |\vec{b}| = \sqrt{3^2 + (-1)^2 + 2^2} = \sqrt{9 + 1 + 4} = \sqrt{14} \] ### Step 3: Substitute into the formula to find \(\cos \theta\) Now we can substitute the values into the dot product formula: \[ -5 = |\vec{a}| |\vec{b}| \cos \theta \] Substituting the magnitudes: \[ -5 = \sqrt{14} \cdot \sqrt{14} \cdot \cos \theta \] This simplifies to: \[ -5 = 14 \cos \theta \] ### Step 4: Solve for \(\cos \theta\) Now, we can solve for \(\cos \theta\): \[ \cos \theta = \frac{-5}{14} \] ### Step 5: Find the angle \(\theta\) To find the angle \(\theta\), we take the inverse cosine: \[ \theta = \cos^{-1}\left(\frac{-5}{14}\right) \] ### Final Answer The angle \(\theta\) between the vectors \(\vec{a}\) and \(\vec{b}\) is: \[ \theta = \cos^{-1}\left(\frac{-5}{14}\right) \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|17 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If 'theta' is the angle between the vectors : vec(a)=hat(i)+2hat(j)+3hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) , find sin theta .

Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k)

Find the angle between the vectors : vec(a)=2hat(i)-hat(j)+2hat(k) " and " vec(b)=6hat(i)+2hat(j)+3hat(k) .

The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) and vec(b)=4hat(i)+3hat(j)-hat(k)

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3hat(k), and vec(b) = 4hat(i) + 3hat(j)- hat(k) ?

Find the sine of the angle between the vectors vec(a) =(2 hat(i) - hat(j) + 3 hat(k)) and vec(b) = (hat(i) + 3 hat(j) + 2 hat(k)).

Find angle between the vectors vec a=hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find the vector of magnitude 3, bisecting the angle between the vectors vec a=2hat i+hat j-hat k and vec b=hat i-2hat j+hat k

The angle between the vectors (hat i + hat j + hat k) and ( hat i - hat j -hat k) is

MODERN PUBLICATION-VECTOR ALGEBRA -Objective Type Questions (A. Multiple Choice Questions)
  1. If vec(a)=hat(i)+2hat(j), then |vec(a)| is :

    Text Solution

    |

  2. Direction - cosines of vec(a)=hat(i)+hat(j)-2hat(k) are :

    Text Solution

    |

  3. If p hat(i)+3hat(j) is a vector of magnitude 5, then the value of p is...

    Text Solution

    |

  4. If is the angle between any two vectors vec a and vec b , t...

    Text Solution

    |

  5. The inequality |vec(a).vec(b)|le |vec(a)||vec(b)| is called :

    Text Solution

    |

  6. The vectors vec(a) and vec(b) are perpendicular if :

    Text Solution

    |

  7. Find the angle between two vectors vec a and vec b with magnitudes 1 a...

    Text Solution

    |

  8. Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=3\ a n d\ vec adot ve...

    Text Solution

    |

  9. The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3...

    Text Solution

    |

  10. The D.C.'s of the vector hat(i)+2hat(j)+3hat(k) are :

    Text Solution

    |

  11. If vec(a)=2hat(i)+2hat(j)+3hat(k), then its magnitude is :

    Text Solution

    |

  12. If vec(a) and vec(b) are unlike vectors, then the angle between them i...

    Text Solution

    |

  13. The angle between the vectors hat(i)-hat(j) and hat(j)+hat(k) is :

    Text Solution

    |

  14. If vec(a).vec(b)=|vec(a)xx vec(b)|, then angle between vector vec(a) a...

    Text Solution

    |

  15. Find the projection of the vector hat i+3 hat j+7 hat k on the vecto...

    Text Solution

    |

  16. If the angle between two vectors vec(a) and vec(b) is zero, then :

    Text Solution

    |

  17. The projection of vector vec(a)=2hat(i)+3hat(j)+2hat(k) on vec(b)=hat(...

    Text Solution

    |

  18. If the vectors 5hat(i)+2hat(j)-hat(k) and lambda hat(i)-hat(j)+5hat(k...

    Text Solution

    |

  19. Let the vectors vec a and vec b be such that | vec a|=3 and | ...

    Text Solution

    |

  20. Which of the following is true ?

    Text Solution

    |