Home
Class 12
MATHS
If vec(a)=2hat(i)+2hat(j)+3hat(k), then ...

If `vec(a)=2hat(i)+2hat(j)+3hat(k)`, then its magnitude is :

A

17

B

`sqrt(17)`

C

34

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the vector \(\vec{A} = 2\hat{i} + 2\hat{j} + 3\hat{k}\), we will follow these steps: ### Step 1: Identify the components of the vector The vector \(\vec{A}\) has the following components: - \(x = 2\) (coefficient of \(\hat{i}\)) - \(y = 2\) (coefficient of \(\hat{j}\)) - \(z = 3\) (coefficient of \(\hat{k}\)) ### Step 2: Use the formula for the magnitude of a vector The magnitude of a vector \(\vec{A} = x\hat{i} + y\hat{j} + z\hat{k}\) is given by the formula: \[ |\vec{A}| = \sqrt{x^2 + y^2 + z^2} \] ### Step 3: Substitute the values into the formula Now, substituting the values of \(x\), \(y\), and \(z\) into the formula: \[ |\vec{A}| = \sqrt{2^2 + 2^2 + 3^2} \] ### Step 4: Calculate the squares of the components Calculating the squares: - \(2^2 = 4\) - \(2^2 = 4\) - \(3^2 = 9\) ### Step 5: Add the squares Now, add these values together: \[ |\vec{A}| = \sqrt{4 + 4 + 9} = \sqrt{17} \] ### Step 6: Write the final answer Thus, the magnitude of the vector \(\vec{A}\) is: \[ |\vec{A}| = \sqrt{17} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|17 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=2hat(i)+3hat(j)-hat(k) , then |vec(a)| is :

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

If vec(a) = 2hat(i) + hat(j) + 2hat(k), vec(b) = 5hat(i) - 3hat(j) + hat(k) , then projection of vec(a) on vec(b) is

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) then what is (vec(b)-vec(a)). (3vec(a)+vec(b)) equal to ?

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k)) then the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) is

MODERN PUBLICATION-VECTOR ALGEBRA -Objective Type Questions (A. Multiple Choice Questions)
  1. If vec(a)=hat(i)+2hat(j), then |vec(a)| is :

    Text Solution

    |

  2. Direction - cosines of vec(a)=hat(i)+hat(j)-2hat(k) are :

    Text Solution

    |

  3. If p hat(i)+3hat(j) is a vector of magnitude 5, then the value of p is...

    Text Solution

    |

  4. If is the angle between any two vectors vec a and vec b , t...

    Text Solution

    |

  5. The inequality |vec(a).vec(b)|le |vec(a)||vec(b)| is called :

    Text Solution

    |

  6. The vectors vec(a) and vec(b) are perpendicular if :

    Text Solution

    |

  7. Find the angle between two vectors vec a and vec b with magnitudes 1 a...

    Text Solution

    |

  8. Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=3\ a n d\ vec adot ve...

    Text Solution

    |

  9. The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3...

    Text Solution

    |

  10. The D.C.'s of the vector hat(i)+2hat(j)+3hat(k) are :

    Text Solution

    |

  11. If vec(a)=2hat(i)+2hat(j)+3hat(k), then its magnitude is :

    Text Solution

    |

  12. If vec(a) and vec(b) are unlike vectors, then the angle between them i...

    Text Solution

    |

  13. The angle between the vectors hat(i)-hat(j) and hat(j)+hat(k) is :

    Text Solution

    |

  14. If vec(a).vec(b)=|vec(a)xx vec(b)|, then angle between vector vec(a) a...

    Text Solution

    |

  15. Find the projection of the vector hat i+3 hat j+7 hat k on the vecto...

    Text Solution

    |

  16. If the angle between two vectors vec(a) and vec(b) is zero, then :

    Text Solution

    |

  17. The projection of vector vec(a)=2hat(i)+3hat(j)+2hat(k) on vec(b)=hat(...

    Text Solution

    |

  18. If the vectors 5hat(i)+2hat(j)-hat(k) and lambda hat(i)-hat(j)+5hat(k...

    Text Solution

    |

  19. Let the vectors vec a and vec b be such that | vec a|=3 and | ...

    Text Solution

    |

  20. Which of the following is true ?

    Text Solution

    |