Home
Class 12
MATHS
If A, B, C, D are the points with positi...

If A, B, C, D are the points with position vectors : `hat(i)+hat(j)-hat(k), 2hat(i)-hat(j)+3hat(k), 2hat(i)-3hat(k), 3hat(i)-2hat(j)+hat(k)` respectively. Find the projection of `vec(AB)` along CD.

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of vector \( \vec{AB} \) along \( \vec{CD} \), we will follow these steps: ### Step 1: Find the position vectors of points A, B, C, and D. Given: - \( \vec{A} = \hat{i} + \hat{j} - \hat{k} \) - \( \vec{B} = 2\hat{i} - \hat{j} + 3\hat{k} \) - \( \vec{C} = 2\hat{i} - 3\hat{k} \) - \( \vec{D} = 3\hat{i} - 2\hat{j} + \hat{k} \) ### Step 2: Calculate the vector \( \vec{AB} \). The vector \( \vec{AB} \) is given by: \[ \vec{AB} = \vec{B} - \vec{A} \] Substituting the position vectors: \[ \vec{AB} = (2\hat{i} - \hat{j} + 3\hat{k}) - (\hat{i} + \hat{j} - \hat{k}) \] Now, simplify: \[ \vec{AB} = (2\hat{i} - \hat{i}) + (-\hat{j} - \hat{j}) + (3\hat{k} + \hat{k}) = \hat{i} - 2\hat{j} + 4\hat{k} \] ### Step 3: Calculate the vector \( \vec{CD} \). The vector \( \vec{CD} \) is given by: \[ \vec{CD} = \vec{D} - \vec{C} \] Substituting the position vectors: \[ \vec{CD} = (3\hat{i} - 2\hat{j} + \hat{k}) - (2\hat{i} - 3\hat{k}) \] Now, simplify: \[ \vec{CD} = (3\hat{i} - 2\hat{i}) + (-2\hat{j}) + (\hat{k} + 3\hat{k}) = \hat{i} - 2\hat{j} + 4\hat{k} \] ### Step 4: Find the projection of \( \vec{AB} \) along \( \vec{CD} \). The formula for the projection of vector \( \vec{u} \) along vector \( \vec{v} \) is given by: \[ \text{proj}_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \vec{v} \] In our case, \( \vec{u} = \vec{AB} \) and \( \vec{v} = \vec{CD} \). ### Step 5: Calculate the dot product \( \vec{AB} \cdot \vec{CD} \). \[ \vec{AB} \cdot \vec{CD} = (\hat{i} - 2\hat{j} + 4\hat{k}) \cdot (\hat{i} - 2\hat{j} + 4\hat{k}) \] Calculating the dot product: \[ = (1)(1) + (-2)(-2) + (4)(4) = 1 + 4 + 16 = 21 \] ### Step 6: Calculate the magnitude of \( \vec{CD} \). \[ |\vec{CD}| = \sqrt{(1)^2 + (-2)^2 + (4)^2} = \sqrt{1 + 4 + 16} = \sqrt{21} \] ### Step 7: Calculate the projection. Now, substitute into the projection formula: \[ \text{proj}_{\vec{CD}} \vec{AB} = \frac{21}{|\vec{CD}|^2} \vec{CD} \] Since \( |\vec{CD}|^2 = 21 \): \[ \text{proj}_{\vec{CD}} \vec{AB} = \frac{21}{21} \vec{CD} = \vec{CD} \] Thus, the projection of \( \vec{AB} \) along \( \vec{CD} \) is: \[ \text{proj}_{\vec{CD}} \vec{AB} = \hat{i} - 2\hat{j} + 4\hat{k} \] ### Final Answer: The projection of \( \vec{AB} \) along \( \vec{CD} \) is \( \hat{i} - 2\hat{j} + 4\hat{k} \). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Revision Exercise|10 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Miscellaneous Exercise on Chapter 10|19 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the vector projection of the vector : 7hat(i)+hat(j)-hat(k) on 2hat(i)+6hat(j)+3hat(k)

show that the points whose position vectors are (-2hat(i) +3hat(j) +5hat(k)) (hat(i)+2hat(j)+3hat(k)) " and " (7hat(i) -hat(k)) are collinear.

Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

Show that the four points A, B, C and D with position vectors 4hat(i)+5hat(j)+hat(k), -(hat(j)+hat(k)),3hat(i)+9hat(j)+4hat(k) and 4(-hat(i)+hat(j)+hat(k)) respectively are coplanar.

Find 'lambda' if the vectors : hat(i)-hat(j)+hat(k), 3hat(i)+hat(j)+2hat(k) and hat(i)+lambda hat(j)-3hat(k) are coplanar.

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to