Home
Class 12
MATHS
Find |vec(a)xx vec(b)|, if vec(a)=2hat(i...

Find `|vec(a)xx vec(b)|`, if `vec(a)=2hat(i)+hat(j)+3hat(k)` and `vec(b)=3hat(i)+5hat(j)-2hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus of the cross product of vectors \(\vec{a}\) and \(\vec{b}\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = 2\hat{i} + \hat{j} + 3\hat{k} \] \[ \vec{b} = 3\hat{i} + 5\hat{j} - 2\hat{k} \] ### Step 2: Set up the determinant for the cross product The cross product \(\vec{a} \times \vec{b}\) can be calculated using the determinant of a matrix formed by the unit vectors \(\hat{i}\), \(\hat{j}\), and \(\hat{k}\) and the components of \(\vec{a}\) and \(\vec{b}\): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 3 \\ 3 & 5 & -2 \end{vmatrix} \] ### Step 3: Calculate the determinant To find the determinant, we can expand it as follows: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 1 & 3 \\ 5 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 3 \\ 3 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ 3 & 5 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} 1 & 3 \\ 5 & -2 \end{vmatrix} = (1 \cdot -2) - (3 \cdot 5) = -2 - 15 = -17 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} 2 & 3 \\ 3 & -2 \end{vmatrix} = (2 \cdot -2) - (3 \cdot 3) = -4 - 9 = -13 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 2 & 1 \\ 3 & 5 \end{vmatrix} = (2 \cdot 5) - (1 \cdot 3) = 10 - 3 = 7 \] Putting it all together: \[ \vec{a} \times \vec{b} = -17\hat{i} + 13\hat{j} + 7\hat{k} \] ### Step 4: Find the modulus of the cross product The modulus of the vector \(\vec{a} \times \vec{b}\) is given by: \[ |\vec{a} \times \vec{b}| = \sqrt{(-17)^2 + (13)^2 + (7)^2} \] Calculating each term: \[ (-17)^2 = 289, \quad (13)^2 = 169, \quad (7)^2 = 49 \] Adding these values: \[ |\vec{a} \times \vec{b}| = \sqrt{289 + 169 + 49} = \sqrt{507} \] ### Step 5: Simplify the modulus We can simplify \(\sqrt{507}\): \[ 507 = 3 \times 169 = 3 \times 13^2 \] Thus, \[ |\vec{a} \times \vec{b}| = 13\sqrt{3} \] ### Final Answer The modulus of the cross product \(|\vec{a} \times \vec{b}|\) is: \[ \boxed{13\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) , if vec(a)=(2 hat(i)-hat(j)+3hat(k)) and vec(b)=(3hat(i)+hat(j)+2hat(k)) .

Find ( vec (a) xxvec (b)) and |vec(a) xx vec (b)| ,when (i) vec(a) = hat(i)-hat(j)+ 2hat(k) and vec(b)= 2 hat(i)+3 hat(j)-4hat(k) (ii) vec(a)= 2hat (i)+hat(j)+ 3hat(k) and vec(b)= 3hat(i)+5 hat(j) - 2 hat(k) (iii) vec(a)=hat(i)- 7 hat(j)+ 7hat(k) and vec(b) = 3 hat(i)-2hat(j)+2 hat(k) (iv) vec(a)= 4hat(i)+ hat(j)- 2hat(k) and vec(b) = 3 hat(i)+hat(k) (v) vec(a) = 3 hat(i) + 4 hat(j) and vec(b) = hat(i)+hat(j)+hat(k)

Find vec(A).vec(b) when (i) vec(a)=hat(i)-2hat(j)+hat(k) and vec(b)=3 hat(i)-4 hat(j)-2 hat(k) (ii) vec(a)=hat(i)+2hat(j)+3hat(k) and vec(b)=-2hat(j)+4hat(k) (iii) vec(a)=hat(i)-hat(j)+5hat(k) and vec(b)=3 hat(i)-2 hat(k)

Find vec(a).(vec(b)xx vec(c )) if : vec(a)=2hat(i)+hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c )=3hat(i)+hat(j)+2hat(k) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

Find a unit vector in the direction of (vec(a)+vec(b)) , where : vec(a)=2hat(i)+2hat(j)-5hat(k) and vec(b)=2hat(i)+hat(j)+3hat(k) .

Find [vec(a)vec(b)vec(c)] , when (i) vec(a)=2hat(i)+hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j)+2hat(k) (ii) vec(a)=2hat(i)-3hat(j)+4hat(k), vec(b)=hat(i)+2hat(j)-hat(k) and vec(c)=3hat(i)-hat(j)+2hat(k) (iii) vec(a) = 2 hat(i)-3hat(j), vec(b)=hat(i)+hat(j)-hat(k) and vec(c)=3hat(i)-hat(k)

(i) If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , show that (vec(a)+vec(b)) is perpendicular to (vec(A)-vec(b)) . (ii) If vec(a)=(5hat(i)-hat(j)-3 hat(k)) and vec(b)=(hat(i)+3hat(j)-5hat(k)) then show that (vec(a)+vec(b)) and (vec(a)-vec(b)) are orthogonal.

Find the unit vector in the direction of vec(a)-vec(b) , where : vec(a)=hat(i)+3hat(j)-hat(k), vec(b)=3hat(i)+2hat(j)+hat(k) .