Home
Class 12
MATHS
If |a|=a and | vec b|=b , prove that ( v...

If `|a|=a` and `| vec b|=b ,` prove that `( vec a/( vec a^2)- vec b/(b^2))^2` = `(( vec a- vec b)/(a b))^2` .

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If |a|=a and |vec b|=b, prove that ((vec a)/(a^(2))-(vec b)/(b^(2)))^(2)=((vec a-vec b)/(ab))^(2)

If |vec a|=a and |vec b|=b then prove that ((vec a)/(a^(2))-(vec b)/(b^(2)))=((vec a-vec b)/(ab))^(2)

If |vec a|=vec a and |vec b|, prove that ((vec a)/(a^(2))-(vec b)/(b^(2)))^(2)=((vec a-vec b)/(ab))^(2)

For any two vectors vec a and vec b, prove that ((vec a) / (| vec a | ^ (2)) - (vec b) / (| vec b | ^ (2))) ^ (2) = ((vec a-vec b) / (| vec a || vec b |)) ^ (2)

Prove that (vec(a) + vec(b)) xx (vec(a) - vec(b)) = 2 (vec(b) xx vec(a))

Prove that (vec(a)-vec(b)) xx (vec(a) +vec(b))=2(vec(a) xx vec(b))

Prove that (vec a * vec b) ^ (2) <= vec a ^ (2) * vec b ^ (2)

Prove that |vec a + vec b| = sqrt (|vec a|^2 + |vec b|^2 + 2 vec a * vec b) .

If |vec a|=1=|vec b| and |vec a + vec b|=sqrt3 then evaluate (2 vec a - vec b) * (3 vec a + vec b) .

For any two vectors vec a and vec b ,prove that (vec a xxvec b)^(2)=|vec a|^(2)|vec b|^(2)-(vec a*vec b)^(2)