Home
Class 12
MATHS
If vec(r )=x hat(i)+y hat(j)+x hat(k), f...

If `vec(r )=x hat(i)+y hat(j)+x hat(k)`, find : `(vec(r )xx hat(i)).(vec(r )xx hat(j))+xy`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \((\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j}) + xy\), where \(\vec{r} = x \hat{i} + y \hat{j} + x \hat{k}\). ### Step-by-Step Solution: 1. **Define the Vector**: \[ \vec{r} = x \hat{i} + y \hat{j} + x \hat{k} \] 2. **Calculate \(\vec{r} \times \hat{i}\)**: \[ \vec{r} \times \hat{i} = (x \hat{i} + y \hat{j} + x \hat{k}) \times \hat{i} \] Using the properties of the cross product: - \(\hat{i} \times \hat{i} = 0\) - \(\hat{j} \times \hat{i} = -\hat{k}\) - \(\hat{k} \times \hat{i} = \hat{j}\) Therefore, \[ \vec{r} \times \hat{i} = 0 + y(-\hat{k}) + x\hat{j} = x\hat{j} - y\hat{k} \] 3. **Calculate \(\vec{r} \times \hat{j}\)**: \[ \vec{r} \times \hat{j} = (x \hat{i} + y \hat{j} + x \hat{k}) \times \hat{j} \] Using the properties of the cross product: - \(\hat{i} \times \hat{j} = \hat{k}\) - \(\hat{j} \times \hat{j} = 0\) - \(\hat{k} \times \hat{j} = -\hat{i}\) Therefore, \[ \vec{r} \times \hat{j} = x\hat{k} + 0 - x\hat{i} = x\hat{k} - x\hat{i} \] 4. **Calculate the Dot Product**: Now we need to compute \((\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j})\): \[ (x\hat{j} - y\hat{k}) \cdot (x\hat{k} - x\hat{i}) \] Expanding this using the distributive property of the dot product: \[ = x\hat{j} \cdot x\hat{k} - x\hat{j} \cdot x\hat{i} - y\hat{k} \cdot x\hat{k} + y\hat{k} \cdot x\hat{i} \] - \(\hat{j} \cdot \hat{k} = 0\) - \(\hat{j} \cdot \hat{i} = 0\) - \(\hat{k} \cdot \hat{k} = 1\) - \(\hat{k} \cdot \hat{i} = 0\) Therefore, we have: \[ = 0 - 0 - yx + 0 = -yx \] 5. **Combine with \(xy\)**: Now we add \(xy\) to the result: \[ -yx + xy = 0 \] ### Final Result: Thus, the final answer is: \[ (\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j}) + xy = 0 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(r )= x hat(i) + y hat(j) + z hat(k) , then what is vec(r ). (hat(i ) + hat(j) + hat(k)) equal to?

If vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + hat(k) and vec(c )= hat(i) + hat(j) - hat(k) , then what is vec(a) xx (vec(b)+ vec(c )) + vec(b) xx (vec(c ) + vec(a)) + vec(c ) xx (vec(a) + vec(b)) is equal to ?

Let vec( a) = 2 hat(i) - 3 hat(j) + 4 hat(k) and vec( b) = 7 hat(i) + hat(j) - 6 hat(k) . If vec( r ) xx vec( a) = vec( r ) xx vec( b) , vec( r ) . ( hat(i) +2 hat(j) + hat(k)) = -3 , then vec ( r ). ( 2 hat(i)- 3hat(j) + hat(k)) is equal to :

If vec(r)=xhat(i)+yhat(j)+zhat(k) , then what is vec(r).(hat(i)+hat(j)+hat(k)) equal to?

If vec(r )_(1)=lamda hat(i) + 2hat(j) + hat(k). vec(r )_(2)= hat(i) + (2 - lamda) hat(j) +2hat(k) are such that |vec(r )_(1)| gt |vec(r )_(2)| then lamda satisfies which one of the following?

If vec(a) = hat(i)- hat(k) , vec(b) = x hat(i) + hat(j) + (1-x) hat(k), vec(c ) = y hat(i) + x hat(j) + (1+ x- y)hat(k) then vec(a).(vec(b) xx vec(c )) depends on

Find ( vec (a) xxvec (b)) and |vec(a) xx vec (b)| ,when (i) vec(a) = hat(i)-hat(j)+ 2hat(k) and vec(b)= 2 hat(i)+3 hat(j)-4hat(k) (ii) vec(a)= 2hat (i)+hat(j)+ 3hat(k) and vec(b)= 3hat(i)+5 hat(j) - 2 hat(k) (iii) vec(a)=hat(i)- 7 hat(j)+ 7hat(k) and vec(b) = 3 hat(i)-2hat(j)+2 hat(k) (iv) vec(a)= 4hat(i)+ hat(j)- 2hat(k) and vec(b) = 3 hat(i)+hat(k) (v) vec(a) = 3 hat(i) + 4 hat(j) and vec(b) = hat(i)+hat(j)+hat(k)

If vec(a) = (hat(i) - 2 hat(j)+ 3 hat(k)) and vec(b) = (2 hat(i) + 3 hat(j)- 5 hat(k)) then find (vec(a) xx vec(b)) and " verify that " (vec(a) xx vec(b)) is perpendicular to each one of vec(a) and vec(b) .

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a) = 3 hat(i) + 2 hat(k) , vec(b) = 3hat(j) - hat(k) and vec(c ) = hat(i) + hat(j) + hat(k) . Find ( vec(a) xx vec(b)). vec(c ) .