Home
Class 12
MATHS
Find the value of 'lambda' such that vec...

Find the value of `'lambda'` such that vectors : `3hat(i)+lambda hat(j)+5hat(k), hat(i)+2hat(j)-3hat(k)` and `2hat(i)-hat(j)+hat(k)` are coplanar.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that the vectors \( \mathbf{A} = 3\hat{i} + \lambda \hat{j} + 5\hat{k} \), \( \mathbf{B} = \hat{i} + 2\hat{j} - 3\hat{k} \), and \( \mathbf{C} = 2\hat{i} - \hat{j} + \hat{k} \) are coplanar, we need to set up the determinant of the coefficients of these vectors and equate it to zero. ### Step-by-Step Solution: 1. **Write the vectors in coefficient form**: \[ \mathbf{A} = \begin{pmatrix} 3 \\ \lambda \\ 5 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \] 2. **Set up the determinant**: The vectors are coplanar if the determinant of the matrix formed by these vectors is zero: \[ \begin{vmatrix} 3 & \lambda & 5 \\ 1 & 2 & -3 \\ 2 & -1 & 1 \end{vmatrix} = 0 \] 3. **Calculate the determinant**: Using the determinant formula for a 3x3 matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix: \[ D = 3 \begin{vmatrix} 2 & -3 \\ -1 & 1 \end{vmatrix} - \lambda \begin{vmatrix} 1 & -3 \\ 2 & 1 \end{vmatrix} + 5 \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} \] 4. **Calculate the smaller 2x2 determinants**: - First determinant: \[ \begin{vmatrix} 2 & -3 \\ -1 & 1 \end{vmatrix} = (2)(1) - (-3)(-1) = 2 - 3 = -1 \] - Second determinant: \[ \begin{vmatrix} 1 & -3 \\ 2 & 1 \end{vmatrix} = (1)(1) - (-3)(2) = 1 + 6 = 7 \] - Third determinant: \[ \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} = (1)(-1) - (2)(2) = -1 - 4 = -5 \] 5. **Substitute back into the determinant equation**: \[ D = 3(-1) - \lambda(7) + 5(-5) = -3 - 7\lambda - 25 \] Simplifying gives: \[ D = -28 - 7\lambda \] 6. **Set the determinant to zero**: \[ -28 - 7\lambda = 0 \] 7. **Solve for \( \lambda \)**: \[ -7\lambda = 28 \implies \lambda = -4 \] ### Final Answer: The value of \( \lambda \) is \( -4 \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the value of 'lambda' such that the vectors : 3hat(i)+lambda hat(j)+5hat(k), hat(i)+2hat(j)-3hat(k) and 2hat(i)-hat(j)+hat(k) are coplanar.

The value of 'lambda' such that the vectors : 3hat(i)+lambdahat(j)+5hat(k), hat(i)+2hat(j)-3hat(k) and 2hat(i)-hat(j)+hat(k) are coplanar is __________.

What is the value of lamda for which the vectors hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k) are coplanar

What is the value of lambda for which the vectors hat(i)-hat(j)+hat(k), 2 hat(i)+hat(j)-hat(k) and lambda hat(i)-hat(j)+lambda hat(k) are co-planar?

What is the value of m, if the vector 2 hat(i) - hat(j) + hat(k), hat(i) + 2hat(j)- 3hat(k) and 3hat(i) + m hat(j)+ 5hat(k) are coplanar?

Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.

Find 'lambda' if the vectors : hat(i)-hat(j)+hat(k), 3hat(i)+hat(j)+2hat(k) and hat(i)+lambda hat(j)-3hat(k) are coplanar.

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Find the value of lambda so that the vectors vec(a)=2hat(i)-3hat(j)+hat(k),vec(b)=hat(i)+2hat(j)-3hat(k) a nd vec(c)=hat(j)+lambda hat(k) are coplanar.

If the vectors hat(i)-2hat(j)+hat(k),ahat(i)+5hat(j)-3hat(k)and5hat(i)-9hat(j)+4hat(k) are coplanar, then the value of a is