Home
Class 12
MATHS
Prove by vector method that sin(A-B)=sin...

Prove by vector method that sin(A-B)=sinAcosB-cosAsinB and sin(A+B)=sinAcosB+cosAsinB

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Prove by vector method that sin(A-B)=sin A cos B-cos A sin B and sin(A+B)=sin A cos B+cos A sin B

Prove by vector method that cos(A+B)=cos A cos B-sin A sin B

Prove by vector method that cos(A+B)cos A cos B-sin A sin B

Show by vector method that sin 2A=2sin A cosA .

If sin(A-B)=sinAcosB-cosAsinB , then sin15^(@) will be

Prove that: (sin(A-B))/(sinAsinB)=(sinAcosB-cosAsinB)/(sinAsinB) (sinAcosB)/(sinAsinB)-(cosAsinB)/(sinCsinA) =cotB-cotA-cotC =0 = RHS Hence Proved.

If A=60^(@) and B=30^(@) , verify that : (i)sin(A-B)=sinAcosB-cosAsinB (ii) cos(A-B)=cosAcosB+sinAsinB (iii) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

Prove that sin(A+B)sin(A-B)=cos^2B-cos^2A

If A=60^(@) and B=30^(@) , verify that : (i)sin(A+B)=sinAcosB+cosAsinB (ii) cos(A+B)=cosAcosB-sinAsinB

Prove that: sin(A+2B)sinA-sinBsin(2A+B)sinB=sin(A+B)sin(A-B)