Home
Class 12
MATHS
The domain of the function : f(x)=log(1-...

The domain of the function : `f(x)=log(1-x)+sqrt(x^(2)-1)` is :

A

`[-1,1]`

B

`(1,oo)`

C

`(0,1)`

D

`(-oo,-1]`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (LEVEL -II)|43 Videos
  • FUNCTIONS

    MODERN PUBLICATION|Exercise LATEST QUESTION FOR AIEEE/JEE EXAMINATIONS|4 Videos
  • FAMILY OF LINES

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|5 Videos
  • HEIGHTS AND DISTANCES

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|1 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sqrt(cos x) is

The function f(x)=log(x+sqrt(x^(2)+1)) is :

The domain of the function : f(x)=log_(10)log_(10)(1+x^2) is :

Root(s) of the equation 9 x^(2)-18|x|+5=0 belonging to the domain of the function f(x)=log (x^(2)-x-2) is (are)

The domain of the function f(x)=sqrt(cosx) is :

The domain of the function f(x) = cot 5x is

The domain of the function f(x)=sqrt(x-sqrt(1-x^(2))) is :

The domain of the function defined by f(x)=cos^(-1)sqrt(x-1) is

The domain of the function f(x)=sqrt(1-sqrt(1-sqrt(1-x^2))) is :

The domain of the function f(x)=(1)/(sqrt(|x|-x)) is :