Home
Class 12
MATHS
The domain of definition of the function...

The domain of definition of the function :
`f(x)=sqrt(log_(10)((5x-x^(2))/(4)))` is :

A

`[0,5]`

B

`(0,5)`

C

`[1,4]`

D

`(1,4)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (LEVEL -II)|43 Videos
  • FUNCTIONS

    MODERN PUBLICATION|Exercise LATEST QUESTION FOR AIEEE/JEE EXAMINATIONS|4 Videos
  • FAMILY OF LINES

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|5 Videos
  • HEIGHTS AND DISTANCES

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|1 Videos

Similar Questions

Explore conceptually related problems

Domain of definition of the function : f(x)=(3)/(4-x^2)+log_(10)(x^(3)-x) is :

Domain of the function . f(x) = [log_(10) ((5x-x^2)/(4))]^(1/2) is

The domain of definition of the function : y=3e^(sqrt(x^(2)-1))log(x-1) is :

Domain of definition of the function f(x)=sqrt(3cos^(-1)(4x)-pi) is equal to

The domain of the function : f(x)=sqrt(log""(1)/(|sinx|)) is :

The domain of the function f(x)=sqrt(log_(0.5)x) is :

The domain of the function : f(x)=(sqrt(-log_(0.3)(x-1)))/(sqrt(-x^(2)+2x+8)) is :

The domain of the function : f(x)=log_(10)log_(10)(1+x^2) is :

Domain of definition of the function : f(x)=sqrt(sin^(-1)(2x)+(pi)/(6)) for real valued x, is :