Home
Class 12
MATHS
The value of ""^(50)C4+sum(r=1)^6""^(56-...

The value of `""^(50)C_4+sum_(r=1)^6""^(56-r)C_3` is

A

`""^(55)C_3`

B

`""^(55)C_4`

C

`""^(56)C_4`

D

`""^(56)C_3`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Multiple Choice Questions - LEVEL - II|61 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Latest Questions from AIEEE/JEE Examinations|6 Videos
  • PARABOLA

    MODERN PUBLICATION|Exercise RECENT COMPETITION QUESTION (QUESTION FROM KARNATAKA CET & COMED)|9 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS (QUESTIONS FROM KARNATAKA CET & COMED )|11 Videos

Similar Questions

Explore conceptually related problems

The value of the expression : ""^(47)C_4+sum_(j=1)^5""^(52-j)C_3 is equal to :

The value of sum_(r=1)^(n)(nP_(r))/(r!)=

The value of sum_(r=1)^(10)r(n C_(r))/(n C_(r-1)) =

If a_(1)=2 and a_(n)=2a_(n-1)+5 for ngt1 , the value of sum_(r=2)^(5)a_(r) is

Evaluate (47)C_(4)+sum_(j=0)^(3)""^(50-j)C_(3)+sum_(k=0)^(5) ""^(56-k)C_(53-k) .

The value of sum_(r=1)^(n) log ((a^(r ))/( b^(r-1))) is :

sum_(r=0)^(m)( n+r )C_(n)=

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

If C_(r) stands for ""^(n)C_(r) and sum_(r=1)^(n)(r*C_(r))/(C_(r-1))=210 , then n equals:

The coefficient of x^(53) is sum_(r=0)^(100) 100 C_(r).(x-3)^(100-r). 2^(r) is