Home
Class 12
MATHS
The difference of the tangents of the a...

The difference of the tangents of the angles which the lines `x^(2)(sec^(2) theta - sin^(2) theta)-2xy tan theta+y^(2)sin^(2) theta=0` makes with x axis is

A

2

B

`2 tan theta`

C

`sin 2 theta`

D

`2 cot theta`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • FAMILY OF LINES

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTION (LEVEL II)|25 Videos
  • FAMILY OF LINES

    MODERN PUBLICATION|Exercise LATEST QUESTION FROM AIEEE/JEE EXAMINATIONS|1 Videos
  • ELLIPSE

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|3 Videos
  • FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|14 Videos

Similar Questions

Explore conceptually related problems

The angle between the pair of straight lines y^(2)sin^(2) theta -xy sin^(2)theta +x^(2)(cos^(2)theta-1) =0 is

If the angle 2 theta is acute, then the acute angle between the pair of lines x^(2)(cos theta-sin theta)+2 x y cos theta+y^(2)(cos theta+sin theta)=0 is

Show that tan ^(2) theta +tan ^(4) theta =sec ^(4) theta -sec ^(2) theta

x = cos theta - cos 2 theta, y = sin theta - sin 2 theta . then find dy/dx

Show that: (a) (1-sin^(2)theta)sec^(2)theta=1 (b) (1+tan^(2)theta)cos^(2)theta=1

If tan theta=(b)/(a) then a cos 2 theta+b sin 2 theta=

If tan theta = 3/4, cos^(2) theta - sin^(2) theta = _______

If x=a sec^(2)theta, y=a tan^(2)theta" then "(d^(2)y)/dx^(2)=

If sin theta+sin ^(2) theta+sin ^(3) theta=1 then cos ^(6) theta-4 cos ^(4) theta+8 cos ^(2) theta=

( sin theta - 2 sin ^ 3 theta ) / (2 cos ^ 3 theta - cos theta ) = tan theta