Home
Class 12
MATHS
If the latus-rectum of the ellipse is ha...

If the latus-rectum of the ellipse is half the minor axis, then its eccentricity is :

A

`sqrt(3)/(2)`

B

`(1)/sqrt(3)`

C

`(1)/(sqrt(2))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|5 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise Recent competitive Questions|12 Videos
  • FAMILY OF LINES

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|5 Videos

Similar Questions

Explore conceptually related problems

If the distance between the foci of an ellipse is equal to length of minor axis, then its eccentricity is

If the major axis of an ellipse is 3 times its minor axis its ecentricity is

The length of the major axis is three times the length of minor axis, then the eccentricity of the ellipse is

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the latus rectum of the ellipse (x^(2))/(25)+(y^(2))/(9)=1

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(36)+(y^(2))/(16)=1

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(4)+(y^(2))/(25)=1

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(16)+(y^(2))/(9)=1

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(25)+(y^(2))/(100)=1

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(49)+(y^(2))/(36)=1

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(100)+(y^(2))/(400)=1