Home
Class 12
MATHS
Geometric mean of 2, 2^(2), 2^(3),…., 2^...

Geometric mean of `2, 2^(2), 2^(3),…., 2^(n)` is :

A

`2^((n+1)/(2))`

B

`2^((n-1)/(2))`

C

`2^((n)/(2))`

D

`2^((2)/(n))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (LEVEL - II )|13 Videos
  • STATISTICS

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|6 Videos
  • SOLUTION OF TRIANGLES

    MODERN PUBLICATION|Exercise Latest questions from AIEE/JEE Examinations|5 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|10 Videos

Similar Questions

Explore conceptually related problems

Let x_(1),x_(2) ,……., x_(n) be n observations, and let barx be their arithmetic mean and sigma^(2) be the variance. Statement-1 : Variance of 2x_(1),2x_(2),…….,2x_(n) is 4sigma^(2) . Statement-2 : Arithmetic mean of 2x_(1),2x_(2),…...,2x_(n) is 4barx .

The number of geometrical isomers for [Pt(NH_(3))_(2)Cl_(2)] is :

Prove that by using the principle of mathematical induction for all n in N : 1.2+ 2.2^(2)+ 3.2^(3)+ ....+ n.2^(n)= (n-1)2^(n+1)+2

Let A_(1),A_(2),A_(3),"......."A_(m) be arithmetic means between -3 and 828 and G_(1),G_(2),G_(3),"......."G_(n) be geometric means between 1 and 2187. Product of geometric means is 3^(35) and sum of arithmetic means is 14025. The value of n is

Let A_(1),A_(2),A_(3),"......."A_(m) be arithmetic means between -3 and 828 and G_(1),G_(2),G_(3),"......."G_(n) be geometric means between 1 and 2187. Product of geometric means is 3^(35) and sum of arithmetic means is 14025. The value of m is

If a is the A.M. of b and c and the two geometric means are G_(1) and G_(2) , then prove that G_(1)^(3)+G_(2)^(3)=2abc

If the geometric mean is (1)/(n) times the harmonic mean between two numbers, then show that the ratio of the two numbers is 1+sqrt(1-n^(2)):1-sqrt(1-n^(2)) .

If m is the A.M of two distinct real number l and n (l,n gt 1) and G_(1),G_(2) and G_(3) are three geometric means between l and n, then G_(1)^(4) + 2G_(2)^(4) + G_(3)^(4) equal :

Draw the structures of geometrical isomers of [CoCl_(2)(en)_(2)]^(+) .

If m is the A.M. of two distinct real numbers l and n ( l , n gt 1) and G_(1) , G_(2) and G_(3) are three geometric means between l and n , then G_(1)^(4) + 2 G_(2)^(4) + G_(3)^(4) equals :