Home
Class 12
MATHS
The mean of the values of 0, 1, 2, …., n...

The mean of the values of 0, 1, 2, …., n, having corresponding weight `.^(n)C_(0), .^(n)C_(1), .^(n)C_(2), ....., .^(n)C_(n)` respectively is :

A

`(2^(n))/(n + 1)`

B

`(2^(n+1))/(n(n + 1))`

C

`(n + 1)/(2)`

D

`(n)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|6 Videos
  • STATISTICS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|3 Videos
  • STATISTICS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|3 Videos
  • SOLUTION OF TRIANGLES

    MODERN PUBLICATION|Exercise Latest questions from AIEE/JEE Examinations|5 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|10 Videos

Similar Questions

Explore conceptually related problems

Find n if .^(n)C_(9)=.^(n)C_(5) .

If .^(n)C_(9)=.^(n)C_(7) , find n.

If ""^(n)C_(8) = ""^(n)C_(2) Find ""^(n)C_(2) ?

Find 'n' if ""^(n)C_(7)= ""^(n)C_(6) ?

Prove that ""^(n)C_(r)+""^(n)C_(r-1)=""^(n+1)C_(r) .

C_(0)-C_(1)+C_(2)-C_(3)+ . . .+(-1)^(n)C_(n) is equal to

if .^(2n)C_(2):^(n)C_(2)=9:2 and .^(n)C_(r)=10 , then r is equal to

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .