Home
Class 12
MATHS
If in a triangle ABC, 2cosA=sinBcosecC, ...

If in a triangle ABC, `2cosA=sinBcosecC`, then :

A

`a=b`

B

`b=c`

C

`c=a`

D

`2a=bc`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    MODERN PUBLICATION|Exercise Level-II|50 Videos
  • SOLUTION OF TRIANGLES

    MODERN PUBLICATION|Exercise Latest questions from AIEE/JEE Examinations|5 Videos
  • SETS

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|6 Videos
  • STATISTICS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|3 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, if acosA=bcosB , then the triangle is

In a triangle ABC, cosecA (sinB cosC + cosB sinC) is :

In a triangle ABC, 2casin.(A-B+C)/(2)=

In any triangle ABC , sin.(A)/(2) is

In a triangle ABC , angle B=60^(@) , then

In a triangle ABC , 2acsin.(1)/(2)(A-B+C) is equal to :

In a triangle ABC, 2acsin.(1)/(2)(A-B+C) is equal to :

If in a triangle ABC, acos^(2).(C)/(2)+c cos^(2).(A)/(2)=(3b)/(2) , then the sides a, b, c :

If in a triangle ABC , acos^(2).(C)/(2)+cos^(2).(A)/(2)=(3b)/(2) , then the sides a,b,c