Home
Class 12
MATHS
The expression : ((a+b+c)(b+c-a)(c+a-b...

The expression :
`((a+b+c)(b+c-a)(c+a-b)(a+b-c))/(4b^(2)c^(2))` is :

A

`cos^(2)A`

B

`sin^(2)A`

C

`cos2A`

D

`1-cosA`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    MODERN PUBLICATION|Exercise Level-II|50 Videos
  • SOLUTION OF TRIANGLES

    MODERN PUBLICATION|Exercise Latest questions from AIEE/JEE Examinations|5 Videos
  • SETS

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|6 Videos
  • STATISTICS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|3 Videos

Similar Questions

Explore conceptually related problems

The expression ((a+b+c)(b+c-a)(c+a-b)(a+b-c))/(4b^2 c^2) for a triangle ABC is equal to

|(a,b,c),(b,c,a),(c,a,b)| =

If a,b,c are non-zero real numbers, then the minimum value of the expression ((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2)) equals

If a, b, c are in A.P and (b-c) x^(2)+(c-a) x+(a-b)=0 and 2(c+a) x^(2)+(b+c) x=0 have a common root then

If a,b,c are in AP and (a+2b-c)(2b+c-a)(c+a-b)=lambdaabc , then lambda is

Show that (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a) =0

|(a - b, b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c)|=0

If the angles A,B and C of a triangle are in an arithmetic progression and if a,b and c denote the lengths of the sides opposite to A,B and C respectively, then the value of the expression (a)/(c)sin2C+(c)/(a)sin2A is :

Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)

The value of determine |{:(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c):}| is