Home
Class 12
MATHS
g(x)=xf(x), where f(x)=x"sin"(1)/(x),x!=...

`g(x)=xf(x)`, where `f(x)=x"sin"(1)/(x),x!=0=0,x=0`. At `x=0`:

A

g is differentiable but g' is continuous

B

g is differentiable but g' is not continuous

C

g is differentiable while f is not continuous

D

both f and g are differentiable.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIABILITY AND DIFFERENTIATION

    MODERN PUBLICATION|Exercise MCQs (LEVEL-II)|35 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MODERN PUBLICATION|Exercise Latest Question from AIEEE/JEE Examinations|7 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Recent competitive Questions|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise Recent competitive Questions|12 Videos

Similar Questions

Explore conceptually related problems

Find lim_(xrarr0)f(x) , where f(x)={{:((x)/(|x|)",", x ne0),(0",",x=0):}

Evaluate lim_(xrarr0)f(x)," where "f(x)={{:((|x|)/(x)",",x ne0),(0",",x=0):}

Find lim_(xrarr0)f(x) and lim_(xrarr1)f(x) , where f(x)={{:(2x+3",",xle0),(3(x+1)",",xgt0):}

Consider f(x)={{:((x^(2))/(|x|)","x!=0),(0","x=0.):}

Find all points of dicontinuity of f, where f(x)={{:((sinx)/(x)," if "x lt 0),(x+1," if "x ge 0):} .

The function f(x)=(x-a)"sin"(1)/(x-a) for x!=a and f(a)=0 is :

Determine if f defined by f(x)={{:(x^(2)sin""(1)/(x)," if "x ne 0),(0," if "x= 0):} is a continuous function?

Let the function f be defined by f(x) = "x sin" (1)/(x) , when x ne 0 = 0 , when x = 0. Then at x = 0, f is :

Let f(x)={{:(x sin.(1)/(x)",",x ne0),(0",",x=0):}} and g(x)={{:(x^(2)sin.(1)/(x)",", x ne 0),(0",", x=0):}} Discuss the graph for f(x) and g(x), and evaluate the continuity and differentiabilityof f(x) and g(x).

If f(x)={{:(xsin((1)/(x))", if "xne0),(0" , if "x=0):} then at x=0 the function f is

MODERN PUBLICATION-DIFFERENTIABILITY AND DIFFERENTIATION -RCQs (Questions from Karnataka CET & COMED)
  1. g(x)=xf(x), where f(x)=x"sin"(1)/(x),x!=0=0,x=0. At x=0:

    Text Solution

    |

  2. If the three function f(x),g(x) and h(x) are such that h(x)=f(x)g(x) a...

    Text Solution

    |

  3. The drivative of e^(ax)cos bx with rexpect to x is re^(ax)cosbx+"tan"^...

    Text Solution

    |

  4. If x=acos^(3)theta and y=asin^(3)theta, then (dy)/(dx)=

    Text Solution

    |

  5. If y=tan^(-1)sqrt(x^(2)-1), then the ratio (d^(2)y)/(dx^(2)):(dy)/(dx)...

    Text Solution

    |

  6. If sqrt(r ) =ae^(thetacotalpha) where a and alpha are real numbers the...

    Text Solution

    |

  7. The derivative of "tan"^(-1)(sinx)/(1+cosx) w.r.t. "tan"^(-1)(cosx)/(1...

    Text Solution

    |

  8. d/(dx)[cos^(2)(cot^(-1)sqrt((2+x)/(2-x)))]

    Text Solution

    |

  9. If f(x)=((sin^(2)x)/(1+cotx))+(cos^(2)x)/(1+tan), then f'((pi)/(4)) is...

    Text Solution

    |

  10. If cos^(-1)((y)/(b))=nlog((x)/(n)), then :

    Text Solution

    |

  11. f(x)=2a-x in -altxlta=3x-2a in a lex. Then which of the following i...

    Text Solution

    |

  12. If x+y=tan^(-1)y" and "(d^(2)y)/(dx^(2))=f(y)(dy)/(dx), then f(y)=

    Text Solution

    |

  13. Let f(x) = cos^(-1) [(1)/(sqrt13) (2 cos x - 3 sin x)]. Then f(0.5) =

    Text Solution

    |

  14. If y=(1+x)(1+x^(2))(1+x^(4)), then (dy)/(dx) at x=1 is :

    Text Solution

    |

  15. If y = (tan^(-1)x)^(2) then show that (x^(2) + 1)^(2) (d^2 y)/(dx^2) +...

    Text Solution

    |

  16. If the function f(x) defined by f(x)=(x^(100))/(100)+(x^(99))/(99)+....

    Text Solution

    |

  17. Which of the following functions is differentiable at x=0. ?

    Text Solution

    |

  18. If x=a(cost+logtant//2),y=asint, then (dy)/(dx)=

    Text Solution

    |

  19. If f(x)=xtan^(-1)x, then lim(xto1)(f(x)-f(1))/(x-1)=

    Text Solution

    |

  20. If f(y)=f(x^(2)+2) and f'(3)=5, then (dy)/(dx) at x=1 is :

    Text Solution

    |

  21. If x = a cos^(3) theta , y = a sin^(3) theta , then 1+((dy)/(dx))^(2)...

    Text Solution

    |