Home
Class 12
MATHS
If the vectors veca,vecb,vecc form the s...

If the vectors `veca,vecb,vecc` form the sides BC,CA and AB respectively of a triangle ABC then (A) `veca.(vecbxxvecc)=vec0` (B) `vecaxx(vecbxvecc)=vec0` (C) `veca.vecb=vecc=vecc=veca.a!=0` (D) `vecaxxvecb+vecbxxvecc+veccxxvecavec0`

A

`veca.vecb+vecb.vecc+vecc.veca=0`

B

`vecaxxvecb=vecbxxvecc=veccxxveca`

C

`veca.vecb=vecb.vecc=vecc.veca`

D

`vecaxxvecb+vecbxxveccxxveca=vec0`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • UNIT TEST PAPER NO. 5 (CALCULUS)

    MODERN PUBLICATION|Exercise Select the correct answer|25 Videos
  • UNIT TEST PAPER NO.3

    MODERN PUBLICATION|Exercise ASSERTION-REASON & COLUMN MATCHING TYPE QUESTIONS (SECTION-B COLUMN MATCHING TYPE QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Prove that [veca+vecb vecb+vecc vecc+veca]= 2[veca vecb vecc]

Prove that [veca+vecb, vecb+vecc, vecc+veca]=2[veca,vecb,vecc]

Knowledge Check

  • If the veactors veca, vecb and vecc form the sides BC,CA and AB respectively of triangle ABC, then :

    A
    `veca.vecb + vecb.vecc+ vecc.veca=0`
    B
    `veca xx vecb=vecb xx vecc = vecc xx veca`
    C
    `veca.vecb=vecb.vecc=vecc.veca`
    D
    `vecaxxvecb + vecb xx vecb xx vecc xx veca =vec0.`
  • If veca+2vecb+3vecc=vecO , then vecaxxvecb+vecbxxvecc+veccxxveca=

    A
    `vecO`
    B
    `6(vecbxxvecc)`
    C
    `2(vecbxxvecc)`
    D
    `3(veccxxveca)`
  • If veca .vecb = veca.vec cand veca xx vecb = veca xx vec c,veca ne0 , then

    A
    `vec = vec c`
    B
    `(vec b-vec c) ||veca`
    C
    `vecb - vec c _|_ veca`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If veca,vecb,vecc are unit vectors such that veca+vecb+vecc=vec0 , find the value of veca*vecb+vecb*vecc+vecc*veca .

    If veca,vecb and vecc are non-coplaner,then value of veca{(vecbxxvecc)/(3vecb.(veccxxveca))}-vecb.{(veccxxveca)/(2vecc.(vecaxxvecb))} is

    [veca+2vecb-vecc,veca-vecb,veca-vecb-vecc]=

    [veca+2vecb-vecc,veca-vecb,veca-vecb-vecc] =

    If vecu=veca-vecb,vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxx vecc| is :