Home
Class 12
PHYSICS
Assuming the radius of the earth to b...

Assuming the radius of the earth to be `6.4xx10^(6)` m calculate the time period T of a satellite for equatorial orbit at `1.4xx10^(3)` km above the surface of the earth and the speed of the satellite in this orbit ?

Promotional Banner

Similar Questions

Explore conceptually related problems

Assuming the radius of the earth to be 6.5 xx 10^(6) m. What is the time period T and speed of satellite for equatorial orbit at 1.4 xx 10^(3) km above the surface of the earth.

Assume the radius of the earth to be 6.4xx10^(6)m a. Calculate the time period T of a satellite on equational orbit at 1.4xx10^(e)m above the surface of the earth. b. What is the speed of the satellite in this orbit? c. If the satellite is travelling in the same direction as the rotation of the earth i.e. west to east, what is the interval between two successie times at which it will appear vertically overhead to an observed at a fixed point on the equator?

Assume the radius of the earth to be 6.4xx10^(6)m a. Calculate the time period T of a satellite on equational orbit at 1.4xx10^(e)m above the surface of the earth. b. What is the speed of the satellite in this orbit? c. If the satellite is travelling in the same direction as the rotation of the earth i.e. west to east, what is the interval between two successie times at which it will appear vertically overhead to an observed at a fixed point on the equator?

Calculate the period of revolution of a satellite orbiting above the surface of the Earth at a distance equal to 9 times the radius of the Earth.

A satellite has to revolve round the earth in a circular orbit of radius 8 xx 10^(3) km. The velocity of projection of the satellite in this orbit will be -

An artificial satellite is describing an equatorial orbit at 3600 km above the earth's surface. Calculate its period of revolution? Take earth radius 6400km .

Calculate the speed of a satellite in an orbit at a height of 1000 km from the Earth's surface. M_E = 6 xx 10^24 kg R_E = 6.4 10^6 m

The critical speed of a satellite orbiting very close to the surface of the earth is [g=10 m//s^(2) and R=6.4xx10^(-6)m]

A remote- sensing satellite of earth revolves in a circular orbit at a height of 0.25xx10^6m above the surface of earth.If earth 's radius is 6.38xx10^6ms^(-2) then the orbital speed of the satellite is