Home
Class 11
PHYSICS
" 6.Prove that "((n+1)/(2))^(n)>(n!)...

" 6.Prove that "((n+1)/(2))^(n)>(n!)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ((n+1)/(2))^(n) gt (n!)

Prove that ((n + 1)/(2))^(n) gt n!

Prove that ((n + 1)/(2))^(n) gt n!

Prove that ((n + 1)/(2))^(n) gt n!

Prove that [(n+1)//2]^n >(n !)dot

Prove that [(n+1)//2]^n >(n !)dot

Prove that ((2n)!)/(2^(2n)(n!)^(2))<=(1)/(sqrt(3n+1)) for all n in N

If n be a positive integer greater than 1, prove that (frac(n+1)(2))^n > n

Prove that (1)/(n!)+(1)/(2!(n-2)!)+(1)/(4!(n-4)!)+...=(1)/(n!)2^(n-1)

Prove that: n !(n+2)=n !+(n+1)!