Home
Class 12
MATHS
सिद्ध करें कि: cos^(-1)x= 2sin^(-1)sq...

सिद्ध करें कि:
`cos^(-1)x= 2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2)), -1lexle1`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Prove that 1/2cos^-1x=sin^-1sqrt((1-x)/2)=cos^-1sqrt((1+x)/2) .

Prove the followings : cos^(-1)x=2sin^(-1)sqrt((1-x)/2)=2cos^(-1)sqrt((1+x)/2)

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))

2sin^(-1) (sqrt(1-x)/2) = cos^(-1) (_______).

sin^(-1)x=cos^(-1)sqrt(1-x^(2))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Show that, sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/sqrt2lexle1

cos^(-1)x= 2 sin ^(-1) sqrt((1-x)/(2))=2 cos ^(-1)""sqrt((1+x)/(2))=2tan^(-1)""(sqrt(1-x^(2)))/(1+x)