Home
Class 12
MATHS
If | vec a|=3,| vec b|=4 then a value of...

If `| vec a|=3,| vec b|=4` then a value of `lambda` for which ` vec a+lambda vec b` is perpendicular to ` vec a-lambda vec b` is : `9/(16)` (b) `3/4` (c) `3/2` (d) `4/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec a| = 3, | vec b| = 4 , then the value of lambda for which vec a + lambda vec b is perpendicular to vec a = lambda vec b is

If |vec a|=3,|vec b|=4 then a value of lambda for which vec a+lambdavec b is perpendicular to vec a-lambdavec b is : (9)/(16) (b) (3)/(4) (c) (3)/(2) (d) (4)/(3)

If |vec(a)| = 3, |vec(b)| = 4 , then the value 'lambda' for which vec(a) + lambda vec(b) is perpendicular to vec(a) - lambda vec(b) , is

If |vec(a)| = 3, |vec(b)| = 4 , then the value 'lambda' for which vec(a) + lambda vec(b) is perpendicular to vec(a) - lambda vec(b) , is

If vec a = i + 2j+3k, vec b = i-2j+k, vec c = 4i+3j-2k and vec a + lambda vec b is perpendicular to vec c then lambda =

If | vec(a) | =3 and |vec(b) |=4 , then the value of lambda for which vec(a) + lambda vec(b) and vec(a) - lambda vec(b) are perpendicular is

If |vec a| = 4 and -3 le lambda le 2 then the range of |lambda vec a|

If |vec(a)|= 4 and |vec(b)| = 3 find the value of lambda for which the vectors vec(a) + lambda vec(b)and vec(a) - lambda vec(b) are perependicular to each other .

If |vec a| = 4 and -3 le lambda le 2 , then the range of |lambda vec a| is