Home
Class 12
MATHS
The acute angle between the planes 5x-4y...

The acute angle between the planes `5x-4y+7z=13` and the y-axis is given by (A) `sin^-1(5/sqrt(90))` (B) `sin^-1((-4)/sqrt(90))` (C) `sin^-1(7/sqrt(90))` (D) `sin^-1(4/sqrt(90))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The acute angle between the plane 5x-4y+7z=13 and the y-axis is givne by (A) sin^-1(5/sqrt(90)) (B) sin^-1((-4)/sqrt(90)) (C) sin^-1(7/sqrt(90)) (D) sin^-1(4/sqrt(90))

The acute angle between the plane 5x-4y+7z=13 and the y-axis is givne by (A) sin^-1(5/sqrt(90)) (B) sin^-1((-4)/sqrt(90)) (C) sin^-1(7/sqrt(90)) (D) sin^-1(4/sqrt(90))

sin^(-1)((1)/(sqrt(5)))+sin^(-1)((1)/(sqrt(10)))=(pi)/(4)

intsqrt(x/(1-x))\ dx is equal to (a) sin^(-1)sqrt(x)+C (b) sin^(-1){sqrt(x)-sqrt(x(1-x))}+C (c) sin^(-1){sqrt(x(1-x))}+C (d) sin^(-1)sqrt(x)-sqrt(x(1-x))+C

int sqrt((x)/(1-x))dx is equal to sin^(-1)sqrt(x)+C(b)sin^(-1){sqrt(x)-sqrt(x(1-x))}+C(c)sin^(-1){sqrt(x(1-x)}+C(d))sin^(-1)sqrt(x)-sqrt(x(1-x))+C

If sin x+7cos x=5 ,then cos(x-phi)=(1)/(sqrt(2)) where (A) cos phi=(7)/(sqrt(50)) (B) cos phi=(7)/(sqrt(75)) (C) sin phi=(1)/(sqrt(50)) (D) sin phi=sqrt((26)/(75))

If the angle between the line (x-1)/(1)=(y-2)/(k)=(z+3)/(4) and the plane x-3y+2z+5=0 is sin^(-1)((3)/(7sqrt(6))) , the value of k is

If sin^-1(1/3)+sin^-1 (2/3)= sin^-1 x then x is equal to (A) (4+sqrt(5)/9 (B) (4sqrt(2)+sqrt(5)/9 (C) (sqrt(3)+1)/6 (D) 1

If sin^-1(1/3)+sin^-1 (2/3)= sin^-1 x then x is equal to (A) (4+sqrt(5)/9 (B) (4sqrt(2)+sqrt(5)/9 (C) (sqrt(3)+1)/6 (D) 1