Home
Class 12
MATHS
I=int(0)^(2 pi)cos^(5)x*dx...

`I=int_(0)^(2 pi)cos^(5)x*dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: I=int_(0)^(2 pi)x*cos^(5)xdx

I_(1)=int_(0)^((pi)/(2))(sin x-cos x)/(1+sin x cos x)dx,I_(2)=int_(0)^(2 pi)cos^(6)xdx,I_(3)=int_((pi)/(2))^((pi)/(2))sin^(3)xdx,I_(4)=int_(0)^(1)1n((1)/(x)-1)dx. Then I_(1)=I_(3)=I_(4)=0,I_(1)!=0I_(1)=I_(3)=0,I_(4)!=0I_(1)=I_(2)=0,I_(4)!=0I_(1)=I_(2)=I_(3)=0,I_(4)!=0

The value of int_(0)^(2pi)cos^(5)x dx , is

int _(0)^(2pi)cos^(5) x dx is equal to

Let I_(1)=int_(0)^(3 pi)(f(cos^(2)x)dxI_(2)=int_(0)^(2 pi)(f(cos^(2)x)dx and I_(3)=int_(0)^( pi)(f(cos^(2)x)dx, then (A)I_(1)+2P_(2)+3I_(2)=0(B)I_(1)=2I_(2)+I_(3)(C)I_(2)+I_(3)=I_(1)(D)I_(1)=2I_(3)

int_(0)^(2 pi)|cos x|dx

I=int_(0)^(2 pi)cos^(-1)(cos x)dx

int_(0)^(pi/2)(cos^(5)x dx)/(sin^(5)x+cos^(5)x)

I_(1)=int_(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I_(2)=int_(0)^(2pi)cos^(6)dx , I_(3)=int_(-(pi)/2)^((pi)/2)sin^(3)xdx, I_(4)=int_(0)^(1) In (1/x-1)dx . Then

If P = int_(0)^(3pi) f(cos^(2)x)dx and Q=int_(0)^(pi) f(cos^(2)x)dx , then