Home
Class 12
MATHS
If the vectors veca,vecb,vecc form the s...

If the vectors `veca,vecb,vecc` form the sides BC,CA and AB respectively of a triangle ABC then (A) `veca.(vecbxxvecc)=vec0` (B) `vecaxx(vecbxvecc)=vec0` (C) `veca.vecb=vecc=vecc=veca.a!=0` (D) `vecaxxvecb+vecbxxvecc+veccxxvecavec0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca is perpendiculasr to both vecb and vecc then (A) veca.(vecbxxvecc)=vec0 (B) vecaxx(vecbxvecc)=vec0 (C) vecaxx(vecb+vecc)=vec0 (D) veca+(vecb+vecc)=vec0

If veca is perpendiculasr to both vecb and vecc then (A) veca.(vecbxxvecc)=vec0 (B) vecaxx(vecbxvecc)=vec0 (C) vecaxx(vecb+vecc)=vec0 (D) veca+(vecb+vecc)=vec0

If veca+vecb+vecc=vec0 , show that vecaxxvecb=vecbxxvecc=veccxxveca .

If vecax(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , and [(veca,vecb,vecc)]=

Let veca,vecb,vecc be unit such that veca+vecb+vecc=vec0 . Which one of the following is correct? (A) vecaxxvecb=vecbxxvecc=veccxxveca=vec0 (B) vecaxxvecb=vecbxxvecc=veccxxveca!=vec0 (C) vecaxxvecb=vecbxxvecc=vecxxvecc!=vec0 (D) vecaxxvecb, vecbxxvecc, veccxxveca are mutually perpendicular

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

If |veca|=5,|vecb|=6,|vecc|=7 and veca+vecb+vecc=vec0 , find veca.vecb+vecb.vecc+vecc.veca.

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=