Home
Class 12
MATHS
If (1 + 3 + 5 + .... " upto n terms ")/(...

If `(1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo`, then x is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(10)x-(1)/(2)log_(10)(x-(1)/(2))=log_(10)(x+(1)/(2))-(1)/(2)log_(10)(x+(1)/(8))

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

If (1+3+5+...+ nterms )/(4+7+10+... nterms )=(20)/(7log_(10)x) and n=log_(10)x+log_(10)x^((1)/(2))+.......oo then x is equal to

Find log_(10)1((1)/(2))+log_(10)1((1)/(3))+log_(10)1((1)/(4))+ upto 198 terms

x^((log_(10)x+7)/(4))=10^(log_(10)x+1)

if (1+3+5-...up rarr nterms)/(4+7+10+...up rarr nterms)=(20)/(7log_(10)X) and n=log_(10)x+(log_(10)X^(1))/(2)+(log_(10)X^(1))/(4)+.........+oo then x is equal to

if (1+3+5-...upto n terms)/(4+7+10+...upto n terms)=20/(7log_10 X and n = log_10 x + log_10 X^1/2 + log_10 X^1/4 + ............ + oo , then x is equal to

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3