Home
Class 12
MATHS
The length of the perpendicular form ...

The length of the perpendicular form the origin to the plane passing through the point `a` and containing the line ` vec r= vec b+lambda vec c` is a. `([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|)` b. `([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|)` c. `([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|)` d. `([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)`

Promotional Banner

Similar Questions

Explore conceptually related problems

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a + vec b + vec c = 0, prove that (vec a xx vec b) = (vec b xx vec c) = (vec c xx vec a)

[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

If vec a, vec b, vec c are non coplaner, show that vec a = (vec a * vec a) / (vec with b) (vec b xxvec c) + (vec a * vec b) / (vec with bvec c) (vec c xxvec a) + (vec a * vec c) / (vec with bvec c) (vec a xxvec b)

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

If vec a, vec b and vec c are non coplaner vectors such that vec b xxvec c = vec a, vec c xxvec a = vec b and vec a xxvec b = vec c then | vec a + vec b + vec c | =

If vec a, vec b, vec c are unit vectors such that vec a + vec b + vec c = vec 0 find the value of vec a * vec b + vec b * vec c + vec c * vec avec a * vec b + vec b * vec c + vec c * vec a

If vec r=x_1( vec axx vec b)+x_2( vec bxx vec a)+x_3( vec cxx vec d) and 4[ vec a vec b vec c]=1, then x_1+x_2+x_3 is equal to (A) 1/2 vecr .( vec a+ vec b+ vec c) (B) 1/4 vecr.( vec a+ vec b+ vec c) (C) 2 vecr.( vec a+ vec b+ vec c) (D) 4 vecr.( vec a+ vec b+ vec c)

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then vec b= vec c b. vec b=0 c. vec b+ vec c=0 d. none of these