Home
Class 12
MATHS
The line (x-2)/3=(y+1)/2=(z-1)/-1 inter...

The line `(x-2)/3=(y+1)/2=(z-1)/-1` intersects the curve `x y=c^(2),z=0` if `c` is equal to a. `+-1` b. `+-1//3` c. `+-sqrt(5)` d. none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The line (x-2)/(3)=(y+1)/(2)=(z-1)/(-1) intersects the curve xy=c^2, z=0, if c is equal to

The line (x-2)/(3)=(y+1)/(2)=(z-1)/(-1) intersects the curve xy=c^2, z=0, if c is equal to

The line (x-2)/(3)=(y+1)/(2)=(z-1)/(-1) intersects the curve x^2+y^2=r^2, z=0 , then

If the line (x-1)/(5)=(y-3)/(2)=(z-3)/(2) intersects the curve x^(2)-y^(2)=k^(2), z=0 , then the value of 2k can be equal to

If the line (x-2)/5=(y+10)/2=(z+3)/2 meets the curve x y=a^2,z=1, then number of values of a is 0 (b) 1 (c) 2 (d) More than 2

Shortest distance between the lines (x-1)/(1)=(y-1)/(1)=(z-1)/(1) and (x-2)/(1)=(y-3)/(1)=(z-4)/(1) is equal to a.sqrt(14) b.sqrt(7)c.sqrt(2)d .none of these

The area {(x,y);x^(2)<=y<=sqrt(x)} is equal to (1)/(3) b.(2)/(3) c.(1)/(6) d.none of these