Home
Class 12
MATHS
If f(x)=cos[pi^(2)]x+cos[-pi^(2)]x, wher...

If `f(x)=cos[pi^(2)]x+cos[-pi^(2)]x`, where `[x]` stands for the greatest integer function, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f f(x)=cos[pi^2]x+cos[-pi^2]x where [x] stands for the greatest integer functions, then evaluate f(pi/2),f(pi),f(-pi), andf(pi/4) .

If f(x)= cos [pi ^(2) ] x+ cos [-pi ^(2) ] x, where [x] stands for the greatest integer functions , then

If f(x)=cos([pi^2|x)+cos([-pi^2|x) , where [x] stands for the greatest integer function, then

If f(x) =cos [pi^(2)]x+ cos [-pi^(2)] x, where [x] denots the greatest integer function, then the value of f((pi)/(2)) is-

If f(x) =cos [pi^(2)]x+ cos [-pi^(2)] x, where [x] denots the greatest integer function, then the value of f((pi)/(2)) is-

If f(x)= cos [ pi^(2)] x+ cos[ -pi^(2)] x where [x] denotes the greatest integer function, then show that f(-pi)=0

If f(x)= cos [ pi^(2)] x+ cos[ -pi^(2)] x where [x] denotes the greatest integer function, then show that f((pi)/(4)) =(1)/(sqrt(2))

If f(x) = cos|e^(2)| x + cos[-e^(2)]x where [x] stands for greatest integer function, then

If f(x)=cos[pi^2]x+cos[-pi^2]x where [x] denotes the greatest integer function, then show that f(pi//4)=1/sqrt2

If f(x)=cos[pi^2]x , where [x] stands for the greatest integer function, then (a) f(pi/2)=-1 (b) f(pi)=1 (c) f(-pi)=0 (d) f(pi/4)=1/sqrt(2)