Home
Class 12
MATHS
Solve (dy)/(dx) = yf^(')(x) = f(x) f^(')...

Solve `(dy)/(dx) = yf^(')(x) = f(x) f^(')(x)`, where `f(x)` is a given integrable function of `x`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (dy)/(dx)+y*f'(x)=f(x)*f'(x), where f(x) is a given function.

Solve: (dy)/(dx) = (yf^(')(x)-y^(2))/(f(x))

Solve: (dy)/(dx) = (yf^(')(x)-y^(2))/(f(x))

Solve: (dy)/(dx) = (yf^(')(x)-y^(2))/(f(x))

Solve: dy/dx=(y f\'(x)-y^2)/f(x) , where f(x) is a given function of x

A function f satisfies the condition f(x) - f'(x) +f'(x) + f''(x) + ......, where f(x) is a differentiable function indefinitely and dash denotes the order of derivative . If f(0) =1 , then f(x) is

dy/dx+y f\'(x)-f(x)f\'(x)=0

A function f satisfies the condition f(x)=f'(x)+f''(x)+f'''(x)+…, where f(x) is a differentiable function indefinitely and dash denotes the order the derivative. If f(0) = 1, then f(x) is

A function f satisfies the condition f(x)=f'(x)+f''(x)+f''(x)+…, where f(x) is a differentiable function indefinitely and dash denotes the order the derivative. If f(0) = 1, then f(x) is