Home
Class 11
MATHS
If in a A B C ,(sinA)/(sinC)=(sin(A-B))...

If in a ` A B C ,(sinA)/(sinC)=(sin(A-B))/(sin(B-C)` , prove that `a^2,b^2,c^2` are in `AdotPdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sin A)/(sin C)=(sin(A-B))/(sin(B-C)), prove that a^(2),b^(2),c^(2) are in A.P.

If (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) , prove that a^(2), b^(2), c^(2) are in A.P.

In DeltaABC , (sinA)(sinC) = (sin(A-B))/(sin(B-C)) , prove that a^(2),b^(2),c^(2) are in A.P.

In DeltaABC,(sinA)/(sinC)=(sin(A-B))/(sin(B-C)) then prove that a^(2),b^(2),c^(2) are in A.P.

In a triangle ABC , if (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) . Prove that a^2,b^2,c^2 are in A.P.

If sinA : sinC = sin(A-B): sin(B-C) prove that a^2,b^2,c^2 are in A.P.

In DeltaABC if (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) , then a^(2), b^(2), c^(2) are in :

In DeltaABC if (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) , then a^(2), b^(2), c^(2) are in :

In a DeltaABC,sinA/sinC=sin(A-B)/sin(B-C) then

In DetlaABC, if (SinA)/(SinC)=(Sin(A-B))/(Sin(B-C)) then a^(2),b^(2)c^(2) are in