Home
Class 12
MATHS
If in a triangle ABC, (tanA)/1= (tanB)/2...

If in a triangle ABC, `(tanA)/1= (tanB)/2 = (tanC)/3` then prove that `6sqrt(2a)=3sqrt(5b)=2sqrt(10)c`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC if 2a= sqrt(3)b+c then

The ratio of angles in a triangle ABC is 2:3:7 then prove that a:b:c=sqrt(2):2:(sqrt(3)+1)

In a triangle ABC, if (sqrt3-1)a = 2b, A = 3B , then /_C is

In a triangle ABC, if (sqrt3-1)a = 2b, A = 3B , then /_C is

In a triangle ABC, tanA=2, tanB=(3)/(2) and side c= sqrt(65) then circum radius R =

The ratio of angles in a triangle ABC is 2:3:7 then prove that a:b:c=sqrt2:2:(sqrt3+1)

In a triangle ABC,if (sqrt(3)-1)a=2b,A=3B, then /_C is

In triangle ABC are in A.P and b:c= sqrt(3): sqrt(2) , then

If in a Delta ABC ,tanA+tanB+tanC=6, then cotA cotB cotC=

2sqrt(2)a^3+3sqrt(3)b^3+c^3-3sqrt(6)abc