Home
Class 11
MATHS
किसी त्रिभुज ABC के लिए , सिद्ध कीजिए...

किसी त्रिभुज ABC के लिए , सिद्ध कीजिए कि -
`(sin (B-C))/(sin (B+C))=(b^(2)-c^(2))/(a^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any triangle ABC, prove that (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In any triangle ABC, prove that: (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

For any triangle ABC, prove that : (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In any /_\ABC ,prove that sin(B-C)/(sin(B+C))=(b^2-c^2)/(a^2)

In any triangle ABC, prove that : (sin(B-C))/(sin(B+C))= (b^2 -c^2)/a^2 .

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

In any Delta ABC prove that :sin(A-B)(sin(A-B))/(sin(A+B))=(a^(2)-b^(2))/(c^(2))

In any Delta ABC,sum a(sin B-sin C)=a^(2)+b^(2)+c^(2)(b)a^(2)(c)b^(2)(d)0

If in a /_ABC,(sin A)/(sin C)=(sin(A-B))/(sin(B-C)) then a^(2):b^(2):c^(2)