Home
Class 12
MATHS
Find the equation of a straight line ...

Find the equation of a straight line in the plane ` vec r* vec n=d` which is parallel to ` vec r= vec a+lambda vec b` and passes through the foot of the perpendicular drawn from point `P( vec a)to vec rdot vec n=d(w h e r e vec ndot vec b=0)dot` a. ` vec r= vec a+((d- vec a*vec n)/(n^2))n+lambda vec b` b. ` vec r= vec a+((d- vec a* vec n)/n)n+lambda vec b` c. ` vec r= vec a+(( vec a* vec n-d)/(n^2))n+lambda vec b` d. ` vec r= vec a+(( vec a* vec n-d)/n)n+lambda vec b`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec b be the foot of the perpendicular from A to the plane vec r*widehat n=d then vec b must be -

Write the equation of the plane containing the lines vec r= vec a+lambda vec b\ a n d\ vec r= vec a+mu vec c

Find the equation of a line: passing through the point vec c ,parallel to the plane vec r*vec n=p and intersecting the line vec r=vec a+tvec b

The projection of point P( vec p) on the plane vec rdot vec n=q is ( vec s) , then a. vec s=((q- vec pdot vec n) vec n)/(| vec n|^2) b. vec s=p+((q- vec pdot vec n) vec n)/(| vec n|^2) c. vec s=p-(( vec pdot vec n) vec n)/(| vec n|^2) d. vec s=p-((q- vec pdot vec n) vec n)/(| vec n|^2)

The reflection of the point vec a in the plane vec rdot vec n=q is a. vec a+(( vec q- vec adot vec n))/(| vec n|) b. vec a+2((( vec q- vec adot vec n))/(| vec n|)) vec n c. vec a+(2( vec q+ vec adot vec n))/(| vec n|^2) vec n d. none of these

The equation of the plane containing the parallel lines vec r=vec a+tvec c and vec r=vec b+phivec c is

Show that the perpendicular distance of a point A(vec a) from the line vec r=vec b+tvec c is |(vec b-vec a)xxvec c||vec c|

The vector equation of the plane passing through the origin and the line of intersection of the planes vec rdot vec a=lambdaa n d vec rdot vec b=mu is a. vec rdot(lambda vec a-mu vec b)=0 b. vec rdot(lambda vec b-mu vec a)=0 c. vec rdot(lambda vec a+mu vec b)=0 d. vec rdot(lambda vec b+mu vec a)=0

The condition for equations vec rxx vec a= vec ba n d vec rxx vec c= vec d to be consistent is vec bdot vec c= vec adot vec d b. vec adot vec b= vec cdot vec d c. vec bdot vec c+ vec adot vec d=0 d. vec adot vec b+ vec cdot vec d=0

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)