Home
Class 10
MATHS
Prove that tan^(2)A/(tan^2A-1)+cosec^(2)...

Prove that `tan^(2)A/(tan^2A-1)+cosec^(2)A/(sec^2A-cosec^2A)=(1)/(1-2cos^(2)A)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sec^(2) (tan ^(-1) 3) + cosec^(2)(cot^(-1)2) = 15

Prove that sec^(2) (tan ^(-1) 3) + cosec^(2)(cot^(-1)2) = 15

prove that sec^(2)(tan^(-1)2)+cosec^2(cot^(-1)3)=15

prove that sec^(2)(tan^(-1)3)+cosec^2(cot^(-1)4)=27

Prove that: sec^(2) (tan^(-1)2) + "cosec"^(2)(cot^(-1)3)=15 .

Prove that (tan^2 theta)/(tan^2 theta-1)+(cosec^2 theta)/ (sec^2 theta-cosec^2 theta)= -sec 2 theta .

Prove that: sec^2(tan^(-1)3)-cosec^2(cot^(-1)3)=0

Prove that: sec^(2) (tan^(-1)√3) + "cosec"^(2)(cot^(-1)√3)=8 .

Prove the Identity (tan^(2)theta)/(tan^(2)theta-1)+(cosec^(2)theta)/(sec^(2)theta-cosec^(2)theta)=(1)/(sin^(2)theta-cos^(2)theta)

(tan^(2)theta)/(tan^(2)theta-1)+(cosec^(2)theta)/(sec^(2)theta-cosec^(2)theta)=(1)/(sin^(2)theta-cos^(2)theta)