Home
Class 12
MATHS
Let alpha and beta be the roots of the e...

Let `alpha` and `beta` be the roots of the equation` ax^2+bx+c=0` then `lim_(xrarrbeta)(1-cos(ax^2+bx+c))/((x-beta)^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta be the roots of ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))lim is

If alpha and beta be the roots of the quadratic equation ax^2+bx+c=0 then evaluate lim_(xrarralpha)(1-cos(ax^2+bx+c))/((x-alpha)^2)

If alpha, beta are the zeroes of ax^2+ bx +c , then evaluate : lim_(x rarr beta)(1-cos (ax^2 +bx +c) )/((x-beta)^2) .

If alpha and beta are roots of the equation ax^2+bx +c=0 , then lim_(xrarralpha) (1+ax^2+bx+c)^(1//x-alpha) , is

If alpha and beta are roots of the equation ax^2+bx +c=0 , then lim_(xrarralpha) (1+ax^2+bx+c)^(1//x-alpha) , is

If alpha and beta are the roots of the equation ax^(2)+bx+c=0 then (alpha+beta)^(2) is …………..

Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then lim_(x to 0) (1- cos (ax^(2)+ bx+c))/((x-alpha)^(2)) is equal to

If alpha and beta are the roots of the equation ax^(2)+bx+c=0" then "int((x-alpha)(x-beta))/(ax^(2)+bx+c)dx=

Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0 , then lim_(x rarr alpha) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2)) is equal to :