Home
Class 12
MATHS
If alpha and beta be the roots of ax^2 ...

If `alpha` and `beta` be the roots of `ax^2 +bx+c=0`, then `lim_(x->beta) (1-cos (ax^2 +bx +c) )/((x-beta)^2)lim is`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta be the roots of ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))lim is

If alpha, beta are the zeroes of ax^2+ bx +c , then evaluate : lim_(x rarr beta)(1-cos (ax^2 +bx +c) )/((x-beta)^2) .

Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then lim_(x to 0) (1- cos (ax^(2)+ bx+c))/((x-alpha)^(2)) is equal to

Let alpha and beta be the roots of the equation ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))

Let alpha and beta be the roots of ax^2+bx+c=0 Then lim_( x to alpha) (1- cos (ax^2+bx+c))/(x-alpha)^2 is equal to

Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0 , then lim_(x rarr alpha) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2)) is equal to :

Let alpha and beta be the roots of ax^2 + bx +c =0 , then underset(x to alpha)(lim) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2)) is equal to :

If alpha, beta are the zeroes of ax^(2)+bx+c , then evaluate : lim_(x to beta)(1-cos(ax^(2)+bx+c))/(x-beta)^(2) .

If alpha and beta are the roots of x^2+bx+c=0 Find lim_(x to beta)(e^(2(x^2+bx+c))-1-2(x^2+bx+c))/(x-beta)^2