Home
Class 12
MATHS
If domain of f(x) is [1,3] , then the do...

If domain of `f(x)` is `[1,3]` , then the domain of `f((log)_2(x^2+3x-2))i s` `[-5,-4]uu[1,2]` b. `[-13 ,-2]uu[3/5,5]` c. `[4,1]uu[2,7]` d. `{-3,2}`

Promotional Banner

Similar Questions

Explore conceptually related problems

If domain of f(x) is [1,3] , then the domain of f((log)_2(x^2+3x-2))i s a. [-5,-4]uu[1,2] b. [-13 ,-2]uu[3/5,5] c. [4,1]uu[2,7] d. {-3,2}

If domain of f(x) is [1, 3], then the domain of f(log_(2)(x^(2)+3x-2)) is

If domain of f(x) is [1, 3], then the domain of f(log_(2)(x^(2)+3x-2)) is

If domain of f(x) is [1, 3], then the domain of f(log_(2)(x^(2)+3x-2)) is

If domain of f(x) is [1,3], then the domain of f(log_(2)(x^(2)+3x-2)) is [-5,-4]uu[1,2]b[-13,-2]uu[(3)/(5),5] c.[4,1]uu[2,7] d.{-3,2}

The domain of definition of f(x)=log_(0.5){-log_(2)((3x-1)/(3x+2))} , is

The domain of definition of f(x)=log_(0.5){-log_(2)((3x-1)/(3x+2))} , is

The domain of f(x)=((log)_2(x+3))/(x^2+3x+2) is (a) R-{-1,2} (b) (-2,oo) (c) R-{-1,-2,-3} (d) (-3,oo)-{-1,-2}