Home
Class 11
MATHS
A function f satisfies the condition f(...

A function `f` satisfies the condition `f(x)=f^(prime)(x)+f^(primeprime)(x)+f^(primeprimeprime)(x)`...... ,where f(x) is a differentiable function indefinitely and dash denotes the order of derivative. If `f(0)=1,t h e nf(x)` is (A)`e^(x/2)` (B) `e^x` (C) `e^(2x)` (D) `e^(4x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

A function f satisfies the condition f(x)=f^(prime)(x)+f''(x)+f'''(x)....+infinity ,w h e r ef(x) is a differentiable function indefinitely and dash denotes the order of derivative. If f(0)=1,t h e nf(x) is e^(x/2) (b) e^x (c) e^(2x) (d) e^(4x)

A function f satisfies the condition f(x) - f'(x) +f'(x) + f''(x) + ......, where f(x) is a differentiable function indefinitely and dash denotes the order of derivative . If f(0) =1 , then f(x) is

A function f satisfies the condition f(x)=f^(prime)(x)+f''(x)+f'''(x).... , where f(x) is an indefinitely differentiable function and dash denotes the order of derivatives. If f(0)=1 ,then f(x) is (a) e^(x/2) (b) e^x (c) e^(2x) (d) e^(4x)

A function f satisfies the condition f(x)=f'(x)+f''(x)+f'''(x)+…, where f(x) is a differentiable function indefinitely and dash denotes the order the derivative. If f(0) = 1, then f(x) is

A function f satisfies the condition f(x)=f'(x)+f''(x)+f''(x)+…, where f(x) is a differentiable function indefinitely and dash denotes the order the derivative. If f(0) = 1, then f(x) is

f(x)=int_0^x e^t f(t)dt+e^x , f(x) is a differentiable function on x in R then f(x)=

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0