Home
Class 12
MATHS
In triangle, ABC if 2a^(2) b^(2) + 2b^(2...

In triangle, ABC if `2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4)`, then angle B is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

In an acute triangle ABC if 2a^(2)b^(2)+2b^(2)c^(2)=a^(4)+b^(4)+c^(4), then angle

In triangle ABC if a^(4) + b^(4) + c^(4) = 2a^(2)b^(2) + 2b^(2)c^(2) then the values of B will be-

In Delta ABC , if c^(4) - 2 (a^(2) + b^(2) ) c^(2) + a^(4) +a^(2) b^(2) + b^(4) = 0

In an acute angled Delta ABC , if a^(4) + b^(4) +c^(4) = 2c^(2) (a^(2) + b^(2)) then the angle C is

In /_ABC, if c^(4)-2(a^(2)+b^(2))c^(2)+a^(4)+a^(2)b^(2)+b^(4)=0 then

If a, b, c are the sides of the triangle ABC such that a^(4) +b^(4) +c^(4)=2c^(2) (a^(2)+b^(2)), then the angle opposite to the side c is-

If a, b, c are the sides of the triangle ABC such that a^(4) +b^(4) +c^(4)=2x^(2) (a^(2)+b^(2)), then the angle opposite to the side c is-

In a triangle ABC if a^4+b^4+c^4=2c^2(a^2+b^2) , then angle C is equal to (A) 60^0 (B) 120^0 (C) 45^0 (D) 135^0

(i) If in a triangle ABC, a^(4) + b^(4) +c^(4) - 2b^(2) c^(2) -2c^(2)a^(2)=0 , then show that, C=45^(@) or 135^(@) . (ii) In in a triangle ABC, sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , show that, one of the angles of the triangle is 30^(@) or 150^(@)

If, in Delta ABC, a^(4) + b^(4) + c^(4) = 2a^(2)(b^(2) + c^(2)) then : m/_A = ...