Home
Class 11
MATHS
If f(x) is differentiable and strictly i...

If `f(x)` is differentiable and strictly increasing function, then the value of `("lim")_(xvec0)(f(x^2)-f(x))/(f(x)-f(0))` is 1 (b) 0 (c) `-1` (d) 2

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is differentiable and strictly increasing function, then the value of lim_(xto0)(f(x^2)-f(x))/(f(x)-f(0)) is

If f(x) is differentiable and strictly increasing function, then the value of lim_(x rarr 0) (f(x^(2))-f(x))/(f(x)-f(0))

If f(x) is differentiable and strictly increasing function,then the value of lim_(x rarr0)(f(x^(2))-f(x))/(f(x)-f(0)) is 1 (b) 0(c)-1 (d) 2

Let f(x) be a strictly increasing and differentiable function,then lim_(x rarr0)(f(x^(2))-f(x))/(f(x)-f(0))

If f'(0)=0 and f(x) is a differentiable and increasing function,then lim_(x rarr0)(x*f'(x^(2)))/(f'(x))

If f(x) is differentiable increasing function, then lim_(x to 0) (f(x^(2)) -f(x))/(f(x)-f(0)) equals :

Let f(x) be a twice-differentiable function and f"(0)=2. The evaluate: ("lim")_(xvec0)(2f(x)-3f(2x)+f(4x))/(x^2)

Let f(x) be a twice-differentiable function and f'(0)=2. The evaluate: lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))