Home
Class 12
MATHS
lim(x to 0) (2 sin x - sin 2x)/(x^(3)) ...

`lim_(x to 0) (2 sin x - sin 2x)/(x^(3))` ie equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_( x to 0) ( sin x sin^( -1) x)/(x^(2) is equal to

Lim_(x to 0) ( tan x - sin x)/x^(2) is equal to

If lim_(x to 0) (2a sin x-sin2x)/(tan^(3)x) exists and is equal to 1, then the value of a is

lim_(x rarr0)(2sin x-sin2x)/(x^(3))

lim_( x to 0) (sin (pi sin^(2)x))/x^(2) =

lim_(x rarr0)(2sin x^(0)-sin2x^(0))/(x^(3))

lim_(x rarr0)(sin(pi sin^(2)x))/(x^(2)) is equal to

lim_(x to 0) (cos (sin x) - 1)/(x^2) equals :

lim_(x to 0) (sin x + cos 3x)^(2//x) =