Home
Class 12
MATHS
Prove that the determinant |[x,sintheta,...

Prove that the determinant `|[x,sintheta,costheta],[-sintheta,-x,1],[costheta,1,x]|` is independent of `theta`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the determinate abs([x,sintheta,costheta],[-sintheta,-x,1],[costheta,1,x]) is independent of theta

Prove that the determinant [(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x)] is independent of theta .

Prove that |[x,sintheta, costheta],[-sintheta,-x,1],[costheta,1,x]| is independent of theta

Prove that |[x, sintheta, costheta],[-sintheta, -x, 1],[costheta, 1, x]| is independent of theta

Prove that the determinent |{:(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x):}| is independent from value of theta

If |[x,sintheta,costheta],[-sintheta,-x,1],[costheta,1,x]|=8 , write the value of xdot

Prove that: |(x.sintheta,costheta),(-sintheta,-x,1),(costheta,1,x)|=-x^3

If sintheta+costheta=x then sintheta-costheta=?

If |{:(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x):}|=8 , then the value of x is :