Home
Class 12
MATHS
int0^oof(a/x+x/a)*(lnx)/x d x=lna*int(a/...

`int_0^oof(a/x+x/a)*(lnx)/x d x=lna*int(a/x+x/a)*(dx)/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)f((a)/(x)+(x)/(a))*(ln x)/(x)dx=ln a*int((a)/(x)+(x)/(a))*(dx)/(x)

int_0^(oo) x e^(-x) dx=

int a^(x) lna dx

int_0^(a) sqrt((a-x)/(a+x)) dx =

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=

int_0^1 (x+x^2)dx

int_0^1 (x/(x+1))dx

If P=int_0^oo(x^2)/(1+x^4)dx ; Q=int_0^oo(x dx)/(1+x^4)"and"R=int_0^oo(dx)/(1+x^4), then prove that :